0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

cnn卷积神经网络算法 cnn卷积神经网络模型

工程师邓生 来源:未知 作者:刘芹 2023-08-21 17:15 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

cnn卷积神经网络算法 cnn卷积神经网络模型

卷积神经网络(CNN)是一种特殊的神经网络,具有很强的图像识别和数据分类能力。它通过学习权重和过滤器,自动提取图像和其他类型数据的特征。在过去的几年中,CNN已成为图像识别和语音识别领域的热门算法,广泛应用于自动驾驶、医学诊断、物体检测等方面。

CNN的基本原理是利用卷积层提取图像的特征,通过池化层降低特征的维度,然后通过全连接层将特征映射到输出,实现分类或回归任务。每个卷积层包括多个过滤器(filter),每个过滤器的大小通常是3x3或5x5,通过跨度(stride)和填充(padding)控制每次的卷积步长,提取特征后得到卷积映射(convolution map)。

池化层(pooling layer)可以减少特征的大小,降低计算量,同时可以保留图像的一定特征。Max pooling是最常用的池化方法,通过选取最大值来代替池化区域中的值。

在CNN中,重要的是学习到合适的权重和过滤器,以提取特定的特征。为此,我们需要引入损失函数(loss function)和优化器(optimizer)。损失函数用于衡量CNN输出与真实标签之间的差异,例如交叉熵函数(cross-entropy)。优化器则用于更新权重和过滤器的值,例如随机梯度下降(SGD)算法。

CNN模型的训练过程是一个反向传播算法(backpropagation),主要包括前向传播(forward propagation)和反向传播(backward propagation)两个步骤。前向传播将输入样本通过网络层,得到输出结果,而反向传播则通过逐层反向计算误差,更新权重和过滤器的值,进一步优化CNN模型的性能。

除了标准的CNN模型,还存在一些改进的模型,例如深度卷积神经网络(DCNN)、残差网络(ResNet)、注意力机制(Attention)等。这些模型通过加深网络深度、引入残差连接等方式,进一步提升了CNN模型的性能。

最后,CNN算法成功的原因在于其能够自动提取图像特征,避免了手动提取特征的复杂过程,同时也具有较强的泛化能力。虽然CNN的应用范围还在扩展中,但它已经成为了计算机视觉领域的重要算法,未来的发展及应用还值得期待。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 过滤器
    +关注

    关注

    1

    文章

    442

    浏览量

    20835
  • cnn
    cnn
    +关注

    关注

    3

    文章

    355

    浏览量

    23248
  • 卷积神经网络

    关注

    4

    文章

    371

    浏览量

    12716
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    自动驾驶中常提的卷积神经网络是个啥?

    在自动驾驶领域,经常会听到卷积神经网络技术。卷积神经网络,简称为CNN,是一种专门用来处理网格状数据(比如图像)的深度学习
    的头像 发表于 11-19 18:15 1831次阅读
    自动驾驶中常提的<b class='flag-5'>卷积</b><b class='flag-5'>神经网络</b>是个啥?

    CNN卷积神经网络设计原理及在MCU200T上仿真测试

    CNN算法简介 我们硬件加速器的模型为Lenet-5的变型,网络粗略分共有7层,细分共有13层。包括卷积,最大池化层,激活层,扁平层,全
    发表于 10-29 07:49

    NMSISI库的使用

    (q7_t) 和 16 位整数 (q15_t)。 卷积神经网络示例: 本示例中使用的 CNN 基于来自 Caffe 的 CIFAR-10 示例。神经网络由 3 个
    发表于 10-29 07:07

    NMSIS神经网络库使用介绍

    (q7_t) 和 16 位整数 (q15_t)。 卷积神经网络示例: 本示例中使用的 CNN 基于来自 Caffe 的 CIFAR-10 示例。神经网络由 3 个
    发表于 10-29 06:08

    构建CNN网络模型并优化的一般化建议

    整个模型非常巨大。所以要想实现轻量级的CNN神经网络模型,首先应该避免尝试单层神经网络。 2)减少卷积
    发表于 10-28 08:02

    卷积运算分析

    的数据,故设计了ConvUnit模块实现单个感受域规模的卷积运算. 卷积运算:不同于数学当中提及到的卷积概念,CNN神经网络中的
    发表于 10-28 07:31

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    模型。 我们使用MNIST数据集,训练一个卷积神经网络CNN模型,用于手写数字识别。一旦模型
    发表于 10-22 07:03

    CICC2033神经网络部署相关操作

    读取。接下来需要使用扩展指令,完成神经网络的部署,此处仅对第一层卷积+池化的部署进行说明,其余层与之类似。 1.使用 Custom_Dtrans 指令,将权重数据、输入数据导入硬件加速器内。对于权重
    发表于 10-20 08:00

    卷积神经网络如何监测皮带堵料情况 #人工智能

    卷积神经网络
    jf_60804796
    发布于 :2025年07月01日 17:08:42

    无刷电机小波神经网络转子位置检测方法的研究

    摘要:论文通过对无刷电机数学模型的推导,得出转角:与三相相电压之间存在映射关系,因此构建了一个以三相相电压为输人,转角为输出的小波神经网络来实现转角预测,并采用改进遗传算法来训练网络
    发表于 06-25 13:06

    自动驾驶感知系统中卷积神经网络原理的疑点分析

    背景 卷积神经网络(Convolutional Neural Networks, CNN)的核心技术主要包括以下几个方面:局部连接、权值共享、多卷积核以及池化。这些技术共同作用,使得
    的头像 发表于 04-07 09:15 641次阅读
    自动驾驶感知系统中<b class='flag-5'>卷积</b><b class='flag-5'>神经网络</b>原理的疑点分析

    BP神经网络卷积神经网络的比较

    多层。 每一层都由若干个神经元构成,神经元之间通过权重连接。信号在神经网络中是前向传播的,而误差是反向传播的。 卷积神经网络
    的头像 发表于 02-12 15:53 1307次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播
    的头像 发表于 02-12 15:18 1274次阅读

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化
    的头像 发表于 02-12 15:15 1340次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工
    的头像 发表于 01-09 10:24 2246次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法