0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

直接驱动GaN晶体管的优点

德州仪器 来源:德州仪器 2020-08-24 16:33 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

受益于集成器件保护,直接驱动GaN器件可实现更高的开关电源效率和更佳的系统级可靠性。

高电压(600V)氮化镓(GaN)高电子迁移率晶体管(HEMT)的开关特性可实现提高开关模式电源效率和密度的新型拓扑。GaN具有低寄生电容(Ciss、Coss、Crss)和无第三象限反向恢复的特点。这些特性可实现诸如图腾柱无桥功率因数控制器(PFC)等较高频率的硬开关拓扑。由于它们的高开关损耗,MOSFET和绝缘栅双极晶体管(IGBT)实现此类拓扑。本文中,我们将重点介绍直接驱动GaN晶体管的优点,包括更低的开关损耗、更佳的压摆率控制和改进的器件保护。

简介

在设计开关模式电源时,主要品质因数(FOM)包括成本、尺寸和效率。[1]这三个FOM是耦合型,需要考虑诸多因素。例如,增加开关频率可减小磁性元件的尺寸和成本,但会增加磁性元件的损耗和功率器件中的开关损耗。由于GaN的寄生电容低且没有二极管反向恢复,因此与MOSFET和IGBT相比,GaN HEMT具有显著降低损耗的潜力。

图1:共源共栅驱动和直接驱动配置

通常来讲,MOSFET/IGBT驱动提供合适的导通和关断电流,以支持输入电容。驱动输出和设备栅极之间的外部电阻控制压摆率,并抑制功率和栅极环路振铃。随着GaN压摆率增加,外部组件增加了过多的寄生电感,无法控制开关。将驱动与GaN器件集成到封装中可最大程度降低寄生电感、降低开关损耗并优化驱动控制。

直接驱动优点

漏端和漏端之间的GaN中存在本征二维电子气层(2-DEG),使该器件在零栅极-漏端电压下导电。出于安全原因,没有偏置电源时,必须关闭开关电源中使用的电源器件,以将输入与输出断开。为模拟增强模式器件,将低压MOSFET与GaN源端串联放置。图1所示为实现此目的的两种不同配置:共源共栅驱动和直接驱动。

现在,我们将对比功耗,并描述与每种方法相关的警告所涉及的问题。

在共源共栅配置中,GaN栅极接地,MOSFET栅极被驱动,以控制GaN器件。由于MOSFET是硅器件,因此许多栅极驱动可用。但由于在GaN器件关闭之前必须将GaN栅极至漏端电容(Cgs)和MOSFET Coss充电至GaN阈值电压,因此该配置具有较高的组合Coss。

在直接驱动配置中,MOSFET是一个直接驱动配置,由栅极驱动器在接地和负电压(VNEG)之间驱动的GaN栅极导通/关断组合器件。此外,MOSFET Coss无需充电。关断GaN Cgs的电流来自较低的偏压电源。较低的电源电压可提供相同的GaN栅极至漏端电荷(Qgs),从而可降低功耗。这些功率效率差异在更高的开关频率下会进一步放大。

反向恢复Qrr损失对于共源共栅配置有效。这是因为在第三象限导通中,MOSFET关断,并通过体二极管导通。

图 2:硬切换操作导致过多振铃

由于负载电流反向流动,因此MOSFET中存储了电荷。克服反向恢复电荷的电流来自高电压电源,这会导致大量电损失。但在直接驱动配置中,MOSFET始终处于导通状态,且由于其RDSON低,其寄生二极管也不会导通。因此,最终在直接驱动配置中不会出现与Qrr相关的功率损耗。

在共源共栅配置中,由于GaN漏源电容高(Cds)[2,3],处于关断模式的GaN和MOSFET之间的电压分布会导致MOSFET雪崩。可在MOSFET的漏端和漏端之间并联一个电容器[4]予以解决。但这仅适用于软开关应用,并在硬开关应用中导致高功率损耗。

鉴于GaN栅极已连至MOSFET的漏端,因此无法控制共源共栅驱动中的开关压摆率。在硬开关操作中,来自GaN Cgs、MOSFET Coss、MOSFET Qrr的有效Coss的增加,以及由于防止MOSFET崩溃而可能产生的一些电流导通,可能会在初始充电期间导致较高的漏端电流。较高的漏端电流会导致共源共栅驱动中的较高功率损耗。

在MOSFET的漏端充电至足以关闭GaN器件的程度后,从漏端观察到Coss突然下降——加上流经功率环路电感的漏端电流较高——导致共源共栅中开关节点的过度振铃组态。硬开关事件期间的开关波形如图2所示(橙色轨线=共源共栅驱动;蓝色迹线=直接驱动)。在此模拟中,即使直接驱动配置的压摆率较低且振铃较少(直接驱动在50 V/ns时为4.2 W,而共源共栅驱动在150 V/ns时为4.6 W,所有负载电流均为5A),直接驱动配置每次硬开关耗散的能量却更少。

另一方面,直接驱动配置在开关操作期间直接驱动GaN器件的栅极。无偏置电源时,MOSFET栅极被拉至接地,并以与共源共栅配置相同的方式关闭GaN器件。一旦存在偏置电源,MOSFET保持导通状态,其寄生电容和体二极管从电路中移出。直接驱动GaN栅极的优点在于可通过设置对GaN栅极充电的电流来控制压摆率。

图3:直接驱动配置的驱动路径模型

对于升压转换器驱动电路的简易模型如图3所示。可使用该模型推导公式[1]。

等式1证明:当GaN器件具有足够的栅漏电容(Cgd)时,可通过使用栅极电流通过米勒反馈来控制开关事件的压摆率。对于低Cgd器件,将丢失反馈,且器件的跨导(gm)控制压摆率。

直接驱动配置的另一个优点在于可在栅极环路中增加阻抗,以抑制其寄生谐振。抑制栅极环路还可减少电源环路中的振铃。这降低了GaN器件上的电压应力,并减少了硬开关期间的电磁干扰(EMI)问题。

图2是一个模拟图,显示以功率和栅极环路寄生电感为模型的降压转换器中开关节点振铃的差异。直接驱动配置具有受控的导通,且过冲很少。而共源共栅驱动由于较高的初始Coss、Qrr和较低的栅极环路阻抗而具有较大的振铃和硬开关损耗。

集成栅极驱动的75mΩGaN器件

TI的LMG341x系列600V GaN器件是业界领先的集成GaN FET外加驱动器和保护功能的器件。它是一个8mm x 8mm四方扁平无引线(QFN)多芯片模块(MCM),包括一个GaN FET和具有集成20V串联FET的驱动。RDSON 的总电阻为75mΩ。

该器件的框图如图4所示。栅极驱动器提供GaN FET的直接驱动能力,并具有内置的降压-升压转换器,以产生关闭GaN FET所需的负电压。栅极驱动使用12V单电源供电,并具有一个内部低压差稳压器(LDO),可产生一个5V电源,为驱动和其他控制电路供电。内部欠压锁定(UVLO)电路使安全FET保持关闭状态,直至输入电压超过9.5V。一旦UVLO超过其自身阈值,降压/升压转换器就会接通并对负电源轨(VNEG)充电。一旦VNEG电源电压超过其自身的UVLO,驱动器便会启用驱动。

与分立的GaN和驱动器相比,LMG341x系列的集成直接驱动实现具有诸多优势。栅极驱动的一个重要方面是在硬开关事件期间控制压摆率。LMG341x系列使用可编程电流源来驱动GaN栅极。

图4:单通道600 V,76ΩGaN FET功率级的框图

电流源来驱动GaN栅极。电流源提供阻抗以抑制栅极环路,并允许用户以受控的方式对转换率进行编程,转换率从30 V/ns到100 V/ns,以解决电路板寄生和EMI问题。

通过将串联FET集成到驱动集成电路(IC)中,感测FET和电流感测电路可为GaN FET提供过流保护。这是增强整体系统可靠性的关键功能。使用增强型GaN器件时,这种电流检测方案无法实现。当大于40 A的电流流经GaN FET时,电流保护电路会跳闸。GaN FET在发生过流事件后的60 ns内关闭,从而防止裸片过热。

通过将驱动芯片封装在与GaN FET相同的裸片附着垫(DAP)上,驱动芯片处的引线框架可感测GaN器件的温度。驱动可通过在过热事件期间禁用GaN驱动来保护器件。集成的GaN器件还提供FAULT输出,通知控制器由于故障事件而停止了开关。

为使用直接驱动方法验证操作,我们建立了一个半桥板,并将其配置为降压转换器(图5)。此外,我们使用了ISO7831 双向电平位移器来馈送高侧驱动信号,并返回经过电平位移的FAULT信号。

图 5:典型的半桥配置

图6中,GaN半桥配置从480V总线、以1.5A的转换速率转换为100V/ns。蓝色迹线是开关节点波形,紫色迹线是电感器电流。

硬开关导通稳定,具有约50 V的过冲。此波形使用1 Ghz示波器和探头进行采集,可观察到任何高频振铃。快速的导通时间,外加减小的寄生电容和缺反向恢复电荷,使得基于GaN的半桥配置即使在使用硬开关转换器时也可高效开关。

图 6:降压开关波形示例

总结

GaN在减小寄生电容和无反向恢复方面所提供的优势为使用硬开关拓扑结构同时保持高效率提供了可能。需要受控的高开关压摆率来更大程度地发挥GaN的优势,而这又需要优化的共封装驱动器和精心的电路板布局技术。

共封装驱动有助于更大程度地减少栅极环路寄生效应,以减少栅极振铃。

利用精心布置的印刷电路板(PCB),优化的驱动器可使设计人员以更小的振铃和EMI来控制开关事件的转换速率。这得益于GaN器件的直接驱动配置而非级联驱动配置。

LMG341x系列器件使设计人员能够以30 V/ns至100 V/ns的压摆率控制各类器件的开关。此外,驱动器还提供过流、过热和欠压保护。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 晶体管
    +关注

    关注

    78

    文章

    10262

    浏览量

    146308
  • GaN
    GaN
    +关注

    关注

    21

    文章

    2330

    浏览量

    79247
  • 集成器件
    +关注

    关注

    0

    文章

    20

    浏览量

    9372

原文标题:一文掌握 GaN 器件的直接驱动配置!

文章出处:【微信号:tisemi,微信公众号:德州仪器】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    MUN5136数字晶体管技术解析与应用指南

    onsemi MUN5136数字晶体管旨在取代单个器件及其外部电阻偏置网络。这些数字晶体管包含一个晶体管和一个单片偏置网络,单片偏置网络由两个电阻器组成,一个是串联基极电阻器,另一个是基极-发射极
    的头像 发表于 11-24 16:27 468次阅读
    MUN5136数字<b class='flag-5'>晶体管</b>技术解析与应用指南

    电压选择晶体管应用电路第二期

    电压选择晶体管应用电路第二期 以前发表过关于电压选择晶体管的结构和原理的文章,这一期我将介绍一下电压选择晶体管的用法。如图所示: 当输入电压Vin等于电压选择晶体管QS的栅极控制电压时
    发表于 11-17 07:42

    英飞凌推出首款100V车规级晶体管,推动汽车领域氮化镓(GaN)技术创新

    【2025年11月5日, 德国慕尼黑讯】 英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)宣布推出其首款符合汽车电子委员会(AEC)汽车应用标准的氮化镓(GaN晶体管系列
    的头像 发表于 11-05 14:31 5.9w次阅读
    英飞凌推出首款100V车规级<b class='flag-5'>晶体管</b>,推动汽车领域氮化镓(<b class='flag-5'>GaN</b>)技术创新

    多值电场型电压选择晶体管结构

    多值电场型电压选择晶体管结构 为满足多进制逻辑运算的需要,设计了一款多值电场型电压选择晶体管。控制二进制电路通断需要二进制逻辑门电路,实际上是对电压的一种选择,而传统二进制逻辑门电路通常比较复杂
    发表于 09-15 15:31

    下一代高速芯片晶体管解制造问题解决了!

    晶体管通常基于纳米片堆叠技术,纳米片作为晶体管的沟道部分,其厚度和宽度可以精确控制,以实现更好的静电控制和更高的驱动电流。叉片晶体管可以实现垂直堆叠,即多个
    发表于 06-20 10:40

    无结场效应晶体管详解

    当代所有的集成电路芯片都是由PN结或肖特基势垒结所构成:双极结型晶体管(BJT)包含两个背靠背的PN 结,MOSFET也是如此。结型场效应晶体管(JFET) 垂直于沟道方向有一个 PN结,隧道穿透
    的头像 发表于 05-16 17:32 991次阅读
    无结场效应<b class='flag-5'>晶体管</b>详解

    这个晶体管的发射机直接接到电源负极上,不会烧吗?

    我的理解晶体管的cb be都是有固定压降的,加在发射极上那么大电压还不连电阻。
    发表于 05-15 09:20

    宽带隙WBG功率晶体管的性能测试与挑战

    晶体管的性能得到了显著提升,开启了更高效率和更快动态响应的可能性。宽带隙晶体管在现代电力系统中扮演着关键角色,包括开关电源(SMPS)、逆变器和电动机驱动器,因为
    的头像 发表于 04-23 11:36 732次阅读
    宽带隙WBG功率<b class='flag-5'>晶体管</b>的性能测试与挑战

    多值电场型电压选择晶体管结构

    多值电场型电压选择晶体管结构 为满足多进制逻辑运算的需要,设计了一款多值电场型电压选择晶体管。控制二进制电路通断需要二进制逻辑门电路,实际上是对电压的一种选择,而传统二进制逻辑门电路通常比较复杂
    发表于 04-15 10:24

    晶体管电路设计(下)

    开关电路的设计,FET开关电路的设计,功率MOS电动机驱动电路,功率MOS开关电源的设计,进晶体管开关电源的设计,模拟开关电路的设计,振荡电路的设计,FM无线话筒的设计,
    发表于 04-14 17:24

    晶体管电路设计(下) [日 铃木雅臣]

    晶体管开关电路的设计,FET开关电路的设计,功率MOS电动机驱动电路,功率MOS开关电源的设计,晶体管开关电源的设计,模拟开关电路的设计,振荡电路的设计,FM无线话筒的制作等。
    发表于 03-07 13:55

    氮化镓晶体管的并联设计技术手册免费下载

    氮化镓晶体管的并联设计总结 先上链接,感兴趣的朋友可以直接下载: *附件:氮化镓晶体管的并联设计.pdf 一、引言 ‌ 应用场景 ‌:并联开关广泛应用于大功率场合,如牵引逆变器、可回
    的头像 发表于 02-27 18:26 1008次阅读

    晶体管电路设计与制作

    这本书介绍了晶体管的基本特性,单电路的设计与制作, 双管电路的设计与制作,3~5电路的设计与制作,6以上电路的设计与制作。书中具体内容有:直流工作解析,交流工作解析,接地形式,单
    发表于 02-26 19:55

    Nexperia共源共栅氮化镓(GaN)场效应晶体管的高级SPICE模型

    电子发烧友网站提供《Nexperia共源共栅氮化镓(GaN)场效应晶体管的高级SPICE模型.pdf》资料免费下载
    发表于 02-13 15:23 7次下载
    Nexperia共源共栅氮化镓(<b class='flag-5'>GaN</b>)场效应<b class='flag-5'>晶体管</b>的高级SPICE模型