0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

GAN主要优点是超越了传统神经网络分类和特征提取的功能

Dbwd_Imgtec 来源:Imagination Tech 作者:Imagination Tech 2020-06-20 10:48 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

一、深度信念网络(DBN)

深度信念,就是要有至尊宝一样戴金箍的信念

2006年,神经网络之父Geoffrey Hinton祭出神器深度信念网络,一举解决了深层神经网络的训练问题,推动了深度学习的快速发展。 深度信念网络(Deep Belief Nets),是一种概率生成模型,能够建立输入数据和输出类别的联合概率分布。 深度信念网络通过采用逐层训练的方式,解决了深层次神经网络的优化问题,通过逐层训练为整个网络赋予了较好的初始权值,使得网络只要经过微调就可以达到最优解。 深度信念网络的每个隐藏层都扮演着双重角色:它既作为之前神经元的隐藏层,也作为之后神经元的可见层。 在逐层训练的时候起到最重要作用的是“受限玻尔兹曼机” 结构上看,深度信念网络可以看成受限玻尔兹曼机组成的整体

GAN主要优点是超越了传统神经网络分类和特征提取的功能

1. 玻尔兹曼机(BM)

GAN主要优点是超越了传统神经网络分类和特征提取的功能

玻尔兹曼机,(Boltzmann Machines,简称BM),1986年由大神Hinton提出,是一种根植于统计力学的随机神经网络,这种网络中神经元只有两种状态(未激活、激活),用二进制0、1表示,状态的取值根据概率统计法则决定。 由于这种概率统计法则的表达形式与著名统计力学家L.E.Boltzmann提出的玻尔兹曼分布类似,故将这种网络取名为“玻尔兹曼机”。 在物理学上,玻尔兹曼分布是描述理想气体在受保守外力的作用时,处于热平衡态下的气体分子按能量的分布规律。 在统计学习中,如果我们将需要学习的模型看成高温物体,将学习的过程看成一个降温达到热平衡的过程。能量收敛到最小后,热平衡趋于稳定,也就是说,在能量最少的时候,网络最稳定,此时网络最优。 玻尔兹曼机(BM)可以用在监督学习和无监督学习中。 在无监督学习中,隐变量可以看做是可见变量的内部特征表示,能够学习数据中复杂的规则。玻尔兹曼机代价是训练时间很长很长很长。2. 受限玻尔兹曼机(RBM)

GAN主要优点是超越了传统神经网络分类和特征提取的功能

受限玻尔兹曼机(Restricted Boltzmann Machines,简称RBM) 将“玻尔兹曼机”(BM)的层内连接去掉,对连接进行限制,就变成了“受限玻尔兹曼机”(RBM) 一个两层的神经网络,一个可见层和一个隐藏层。 可见层接收数据,隐藏层处理数据,两层以全连接的方式相连,同层之前不相连。 受限玻尔兹曼机需要将输出结果反馈给可见层,通过让重构误差在可见层和隐藏层之间循环往复地传播,从而重构出误差最小化的一组权重系数。 传统的反向传播方法应用于深度结构在原则上是可行的,可实际操作中却无法解决梯度弥散的问题 梯度弥散(gradient vanishing),当误差反向传播时,传播的距离越远,梯度值就变得越小,参数更新的也就越慢。 这会导致在输出层附近,隐藏层的参数已经收敛;而在输入层附近,隐藏层的参数几乎没有变化,还是随机选择的初始值。

二、生成对抗网络(GAN)

就像孙悟空和牛魔王一样抢夺紫霞仙子,进入对抗状态

GAN(Generative Adversarial Network)是由Goodfellow等人于2014年设计的生成模型,受博弈论中的零和博弈启发,将生成问题视作生成器和判别器这两个网络的对抗和博弈。 该方法由是由Goodfellow等人于2014年提出,生成对抗网络由一个生成器与一个判别器组成,生成网器从潜在空间中随机取样作为输入,其输出结果需要尽量模仿训练集中的真实样本。 判别器的输入为真实样本或生成器的输出,其目的是将生成器的输出从真实样本中尽可能分辨出来。

GAN主要优点是超越了传统神经网络分类和特征提取的功能

GAN主要优点是超越了传统神经网络分类和特征提取的功能,能够按照真实数据的特点生成新的数据。 两个网络在对抗中进步,在进步后继续对抗,由生成式网络得的数据也就越来越完美,逼近真实数据,从而可以生成想要得到的数据(图片、序列、视频等)。1. 生成器(generator)生成器从给定噪声中(一般是指均匀分布或者正态分布)产生合成数据。试图产生更接近真实的数据。 “生成器像是白骨精,想方设法从随机噪声中模拟真实数据样本的潜在分布,以生成以假乱真的数据样本”2. 判别器(discriminator)判别器分辨生成器的的输出和真实数据。试图更完美地分辨真实数据与生成数据。 “判别器是孙悟空,用火眼金睛来判断是人畜无害的真实数据还是生成器假扮的伪装者” 生成器和判别器都可以采用深度神经网络实现,建立数据的生成模型,使生成器尽可能精确你有没出数据样本的分布,从学习方式上对抗性学习属于无监督学习,

网络训练可以等效为目录函数的极大-极小问题

极大:让判别器区分真实数据和伪造数据的准确率最大化

极小:让生成器生成的数据被判别器发现的概率最小化

传统生成模型定义了模型的分布,进而求解参数。比如在已知数据满足正态分布的前提下,生成模型会通过极大似然估计等方法根据样本来求解正态的均值和方差。 生成对抗网络摆脱了对模型分布的依赖,也不限制生成的维度,大大拓宽了生成数据样本的范围,还能融合不同的损失函数,增加了设计的自由度。

三、循环神经网络(RNN)

循环网络,如同月光宝盒,时间在不停地循环

循环神经网络(Recurrent Neural Network),也可以表示递归神经网络(Recursive Neural Network)。循环神经网络可以看成是递归神经网络的特例,递归神经网络可以看成是循环神经网络的推广。 卷积神经网络具有空间上的参数共享的特性,可以让同样的核函数应用在图像的不同区域。 把参数共享调整到时间维度上,让神经网络使用相同权重系数来处理具有先后顺序的数据,得到的就是循环神经网络。

GAN主要优点是超越了传统神经网络分类和特征提取的功能

时间

循环神经网络引入了”时间“的维度,适用于处理时间序列类型的数据。
循环神经网络就是将长度不定的输入分割为等长的小块,再使用相同的权重系统进行处理,从而实现对变长输入的计算与处理。
比方说妈妈在厨房里突然喊你:“菜炒好了,赶紧来......”,即使后面的话没有听清楚,也能猜到十有八九是让你赶紧吃饭

记忆

循环神经网络t时刻的输出取决于当前时刻的输入,也取决于网络前一时刻t-1甚至更早的输出。

从这个意义上来讲,循环神经网络引入引入了反馈机制,因而具有了记忆功能。记忆功能使循环神经网络能够提取来自序列自身的信息,输入序列的内部信息存储在神经网络的隐藏层中,并随着时间的推移在隐藏层中流转。循环网络的记忆特性可以用公式表示为

GAN主要优点是超越了传统神经网络分类和特征提取的功能

W 表示从输入到状态的权重矩阵,U 表示从状态到状态的转移矩阵。
对循环神经网络的训练就是根据输出结果和真实结果之间的误差不断调整参数 W 和 U,直到达到预设要求的过程,训练方法也是基于梯度的反向传播算法。 前馈神经网络某种程序上也具有记忆特性,只要神经网络参数经过最优化,优化的参数就会包含以往数据的踪迹,但是优化的记忆只局限于训练数据集上,当训练的醋应用到新的测试数据集上时,其参数并不会根据测试数据的表现做出进一步调整。1. 双向RNN比如有一部电视剧,在第三集的时候才出现的人物,现在让预测一下在第三集中出现的人物名字,你用前面两集的内容是预测不出来的,所以你需要用到第四,第五集的内容来预测第三集的内容,这就是双向RNN的想法

GAN主要优点是超越了传统神经网络分类和特征提取的功能

如果想让循环神经网络利用来自未来的信息,就要让当前的状态和以后时刻的状态建立直联系,就是双向循环神经网络。

双向循环网络包括正向计算和反向计算两个环节

GAN主要优点是超越了传统神经网络分类和特征提取的功能

双向循环网络需要分别计算正向和反向的结果,并将两者作为隐藏层的最终参数。

2. 深度RNN将深度结构引入循环神经网络就可以得到深度循环网络。 比如你学习英语的时候,背英语单词一定不会就看一次就记住了所有要考的单词,一般是带着先前几次背过的单词,然后选择那些背过但不熟的内容或者没背过的单词来背

GAN主要优点是超越了传统神经网络分类和特征提取的功能

深层双向RNN 与双向RNN相比,多了几个隐藏层,因为他的想法是很多信息记一次记不下来, 深层双向RNN就是基于这么一个想法,每个隐藏层状态h_{t}^{i}既取决于同一时刻前一隐藏层的状态h_{t}^{i-1},也取决于同一隐藏层的状态h_{t-1}^{i} 深度结构的作用在于建立更清晰的表示。用“完形填空”来说,需要根据上下文,来选择合适的词语。有些填空只需要根据它所在的句子便可以推断出来,这对应着单个隐藏层在时间维度上的依赖性;有些填空则可能要通读整段或全文才能确定,这对应了时间维度和空间维度共有的依赖性。3. 递归RNN递归神经网络能够处理具有层次化结构的数据,可以看成循环网络的推广

GAN主要优点是超越了传统神经网络分类和特征提取的功能

循环神经网络特点是在时间维度上共享参数,从而展开处理序列,如果展开成树状态结构,用到的就是递归神经网络。递归神经网络首先将输入数据转化为某种拓扑结构,再在相同的结构上递归使用相同的权重系数,通过遍历方式得到结构化的预测。 例如,“两个大学的老师”有歧义,如果单纯拆分为词序列无法消除歧义。
递归神经网络通过树状结构将一个完整的句子打散为若干分量的组合,生成的向量不是树结构的根节点。

四、长短期记忆网络(LSTM)

如果非要给记忆加一个期限,希望是一万年

长短期记忆网络(LSTM,Long Short-Term Memory)是一种时间循环神经网络,为了解决一般的RNN(循环神经网络)存在的长期依赖问题而专门设计出来的,论文首次发表于1997年。由于独特的设计结构,LSTM适合于处理和预测时间序列中间隔和延迟非常长的重要事件。

RNN通过在时间共享参数引入了记特性,从而可以将先前的信息应用在当前的任务上,可是这种记忆通常只有有限的深度。 例如龙珠超或者火影每周更新一集,即使经历了一周的空档期,我们还是能将前一集的内容和新一集的情节无缝衔接起来。但是RNN的记忆就没有这么强的延续性,别说一个星期,5分钟估计都已经歇菜了。 LSTM可以像人的记忆中选择性地记住一些时间间隔更久远的信息,它会根据组成元素的特性,来判断不同信息是被遗忘或被记住继续传递下去。
LSTM就是实现长期记忆用的,实现任意长度的记忆。要求模型具备对信息价值的判断能力,结合自身确定哪些信息应该保存,哪些信息该舍弃,元还要能决定哪一部分记忆需要立刻使用。4种组成LSTM通常由下面4个模块组成

GAN主要优点是超越了传统神经网络分类和特征提取的功能

① 记忆细胞(memory cell)
作用是存储数值或状态,存储的时限可以是长期也可以是短期 ② 输入门(input gate)
决定哪些信息在记忆细胞中存储 ③ 遗忘门(forget gate)
决定哪些信息从记忆细胞中丢弃 ④ 输出门(output gate)
决定哪些信息从记忆细胞中输出

五、卷积神经网络(CNN)

将鲜花用包装纸沿着对角线卷起来,顾名思义卷积

卷积神经网络(convolutional neural network)指至少某一导中用了卷积运算(convolution)来代替矩阵乘法的神经网络。

GAN主要优点是超越了传统神经网络分类和特征提取的功能

1. 卷积是什么卷积是对两个函数进行的一种数学运算,我们称(f∗g)(n)为f,g的卷积

GAN主要优点是超越了传统神经网络分类和特征提取的功能

我们令x=τ,y=n−τ,那么x+y=n,相当于下面的直线

GAN主要优点是超越了传统神经网络分类和特征提取的功能


如果遍历这些直线,就像毛巾卷起来一样,顾名思义“卷积”

在卷积网络中,卷积本质就是以核函数g作为权重系数,对输入函数f进行加权求和的过程。 其实把二元函数U(x,y)=f(x)g(y)卷成一元函数V(t),俗称降维打击 函数 f 和 g 应该地位平等,或者说变量 x 和 y 应该地位平等,一种可取的办法就是沿直线 x+y = t 卷起来;① 掷骰子求两枚骰子点数加起来为4的概率,这正是卷积的应用场景。 第一枚骰子概率为为f(1)、f(2)、...f(6)
第二枚骰子概率为g(1)、g(2)、...g(m)

GAN主要优点是超越了传统神经网络分类和特征提取的功能

② 做馒头机器不断的生产馒头,假设馒头生产速度是f(t),
那么一天生产出来的馒头总量为

生产出来后会逐渐腐败,腐败函数为g(t),比如10个馒头,24小时会腐败
10∗g(t)
一天生产出来的馒头就是

GAN主要优点是超越了传统神经网络分类和特征提取的功能

③ 做鱼

卷积看做做菜,输入函数是原料,核函数是菜谱,对于同一输入函数鲤鱼来说

核函数中的酱油权重较大,输出红烧鱼

核函数中的糖和醋权重大较大,输出西湖醋鱼

核函数中的辣椒权重较大,输出朝鲜辣鱼

④ 图像处理假设一幅图有噪点,要将它进行平滑处理,可以把图像转为一个矩阵

如果要平滑a1,1点,就把a1,1点附近的组成矩阵f,和g进行卷积运算,再填充回去

GAN主要优点是超越了传统神经网络分类和特征提取的功能

f 和g的计算如下,其实就是以相反的方向进行计算,像卷毛巾一样

GAN主要优点是超越了传统神经网络分类和特征提取的功能

GAN主要优点是超越了传统神经网络分类和特征提取的功能

具体参考 :

何通俗易懂地解释卷积? https://www.zhihu.com/question/22298352 卷积为什么叫「卷」积? https://www.zhihu.com/question/54677157/answer/141245297

2. 卷积神经网络特性

卷积运算的特性决定了神经网络适用于处理具有网络状结构的数据。 典型的网络型数据就是数字图像,无论是灰度还是彩色图像,都是定义在二维像素网络上的一组标题或向量。 卷积神经网络广泛地应用于图像与文本识别之中,并逐渐扩展到自然语言处理等其他领域。① 稀疏感知性
卷积层核函数的大小通常远远小于图像的大小。
图像可能在两个维度上都有几千个像素,但核函数最大不会超过几十个像素。
选择较小的核函数有助于发现图像中细微的局部细节,提升算法的存储效率和运行效率。② 参数共享性
一个模型中使用相同的参数。每一轮训练中用单个核函数去和图像的所有分块来做卷积。③ 平移不变性
当卷积的输入产生平衡时,其输出等于原始输出相同数量的平移,说明平移操作和核函数的作用是可以交换的。

3. 卷积神经网络分层

当输入图像被送入卷积神经网络后,先后要循环通过卷积层、激励层和池化层,最后从全连接层输出分类结果。① 输入层
输入数据,通常会做一些数据处理,例如去均值、归一化、 PCA/白化等② 卷积层
卷积层是卷积神经网络的核心部分,参数是一个或多个随机初始化的核函数,核函数就像按照灯一样,逐行逐列扫描输入图像。扫描完毕后计算出的所有卷积结果可以构成一个矩阵,这个新的矩阵叫特征映射(feature map)。卷积层得到的特征一般会送到激励层处理③ 激励层
主要作用是将卷积层的结果做非线性映射。常见的激励层函数有sigmoid、tanh、Relu、Leaky Relu、ELU、Maxout④ 池化层
在连续的卷基层和激励层中间,用于压缩数据和参数的量,用于减少过拟合。
简而言之,如果输入是图像的话,那么池化层的最主要作用就是压缩图像。
常见的最大池化做法就是将特征映射划分为若干个矩形区域,挑选每个区域中的最大值。

⑤ 全连接层
两层之间所有神经元都有权重连接,通常全连接层在卷积神经网络尾部,输出分类结果。

在卷积神经网络的训练里,待训练的参数是卷积核。

卷积核:也就是用来做卷积的核函数。

卷积神经网络的作用是逐层提取输入对象的特征,训练采用的也是反向传播的方法,参数的不断更新能够提升图像特征提取的精度
责任编辑:pj

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4830

    浏览量

    106931
  • 数据
    +关注

    关注

    8

    文章

    7317

    浏览量

    94111
  • GaN
    GaN
    +关注

    关注

    21

    文章

    2339

    浏览量

    79345
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    神经网络的初步认识

    日常生活中的智能应用都离不开深度学习,而深度学习则依赖于神经网络的实现。什么是神经网络神经网络的核心思想是模仿生物神经系统的结构,特别是大脑中神经
    的头像 发表于 12-17 15:05 44次阅读
    <b class='flag-5'>神经网络</b>的初步认识

    CNN卷积神经网络设计原理及在MCU200T上仿真测试

    数的提出很大程度的解决BP算法在优化深层神经网络时的梯度耗散问题。当x&gt;0 时,梯度恒为1,无梯度耗散问题,收敛快;当x&lt;0 时,该层的输出为0。 CNN
    发表于 10-29 07:49

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定
    发表于 10-29 06:08

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    , batch_size=512, epochs=20)总结 这个核心算法中的卷积神经网络结构和训练过程,是用来对MNIST手写数字图像进行分类的。模型将图像作为输入,通过卷积和池化层提取图像的
    发表于 10-22 07:03

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    神经元,但却能产生复杂的行为。受此启发,与传统神经网络相比,LNN旨在通过模拟大脑中神经元之间的动态连接来处理信息,这种网络能够顺序处理数
    的头像 发表于 09-28 10:03 739次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    神经网络专家系统在电机故障诊断中的应用

    摘要:针对传统专家系统不能进行自学习、自适应的问题,本文提出了基于种经网络专家系统的并步电机故障诊断方法。本文将小波神经网络和专家系统相结合,充分发挥了二者故障诊断的优点,很大程度上降
    发表于 06-16 22:09

    NVIDIA实现神经网络渲染技术的突破性增强功能

    近日,NVIDIA 宣布 NVIDIA RTX 神经网络渲染技术的突破性增强功能。NVIDIA 与微软合作,将在 4 月的 Microsoft DirectX 预览版中增加神经网络
    的头像 发表于 04-07 11:33 913次阅读

    BP神经网络网络结构设计原则

    BP(back propagation)神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络,其网络结构设计原则主要基于以下几个方面: 一、层次结构 输入层 :接收外部输入信号,不
    的头像 发表于 02-12 16:41 1284次阅读

    BP神经网络与卷积神经网络的比较

    多层。 每一层都由若干个神经元构成,神经元之间通过权重连接。信号在神经网络中是前向传播的,而误差是反向传播的。 卷积神经网络(CNN) : CNN
    的头像 发表于 02-12 15:53 1386次阅读

    BP神经网络的优缺点分析

    自学习能力 : BP神经网络能够通过训练数据自动调整网络参数,实现对输入数据的分类、回归等任务,无需人工进行复杂的特征工程。 泛化能力强 : BP
    的头像 发表于 02-12 15:36 1641次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural N
    的头像 发表于 02-12 15:15 1385次阅读

    BP神经网络的基本原理

    输入层、隐藏层和输出层组成。其中,输入层负责接收外部输入数据,这些数据随后被传递到隐藏层。隐藏层是BP神经网络的核心部分,它可以通过一层或多层神经元对输入数据进行加权求和,并通过非线性激活函数(如ReLU、sigmoid或tanh)进行处理,从而
    的头像 发表于 02-12 15:13 1561次阅读

    BP神经网络在图像识别中的应用

    BP神经网络在图像识别中发挥着重要作用,其多层结构使得网络能够学习到复杂的特征表达,适用于处理非线性问题。以下是对BP神经网络在图像识别中应用的分析: 一、BP
    的头像 发表于 02-12 15:12 1216次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工
    的头像 发表于 01-09 10:24 2303次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    使用机器学习改善库特征提取的质量和运行时间

    有预期工作条件下按规范运行。但由于特征化数据的复杂性和数量,传统的库特征提取和验证在计算和工程工作量方面的成本变得越来越高昂。
    的头像 发表于 12-26 11:15 764次阅读
    使用机器学习改善库<b class='flag-5'>特征提取</b>的质量和运行时间