0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

MIT宣布新型神经网络芯片功耗降低95%

倩倩 来源:网易智能 2020-04-17 15:03 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

神经网络非常强大,但是它们需要大量的能量。麻省理工学院的工程师们现开发出了一种新的芯片,可以将神经网络的功耗降低95%,这也许会使得其可在电池驱动的移动设备上运行。

如今智能手机正变得越来越智能,提供了越来越多的人工智能服务,如数字助理和实时翻译。但是,为这些服务进行数据运算的神经网络通常都在云端,智能手机的数据也是在云端来回传输。

这并不是一种理想的状态,因为这需要大量的通信带宽,并且这意味着潜在的敏感数据正在被传输并存储在不受用户控制的服务器上。但是,图形处理器的神经网络正常运行需要大量的能量,这使得在电池电量有限的设备上运行神经网络不切实际。

麻省理工学院的工程师们现在已经设计出了一种芯片,可以大幅降低芯片内存和处理器之间来回传输数据的需求,从而降低95%的功耗。神经网络由成千上万个一层层相互连接的人工神经元组成。每个神经元接收来自其下一层的多个神经元的输入,并且如果这一组合输入通过了一个特定的阈值,它就会将输出传送到上层的多个神经元上。神经元之间的连接强度是由在训练期间设定的权重控制的。

这意味着,对于每个神经元,芯片必须检索特定连接的输入数据和来自内存的连接权重,将它们相乘,存储结果,然后在每一次输入时重复这个过程。这需要大量的数据移动,也因此需要消耗大量的能量。麻省理工学院的新芯片另辟蹊径,使用模拟电路,在内存中并行计算所有输入。这大大减少了需要被推进的数据量,并最终能节省大量的能源。这种方法要求连接的权重为二进制而不是一系列的值,但是先前的理论工作表明这不会对芯片的准确性造成太大影响,研究人员发现芯片的结果基本上包括在标准计算机上运行的传统非二进制神经网络的2%到3%之内。

这并不是研究人员第一次在内存中创建处理数据的芯片,以减少神经网络的功耗,但这是第一次使用这种方法来运行基于图像的人工智能应用程序的强大的卷积神经网络。IBM人工智能副总裁达里奥·吉尔在一份声明中说:“研究结果显示,在使用内存阵列进行卷积运算时,它的性能令人印象深刻。它肯定会为未来物联网的图像和视频分类提供更复杂的卷积神经网络。”

然而,不仅仅是研究小组在研究这个问题。让智能手机、家用电器、各种物联网设备等设备搭载人工智能的愿望,正驱使着硅谷的大佬们纷纷转战低功耗人工智能芯片。

苹果已经将其Neural Engine芯片整合到iPhone X中,以增强其面部识别技术等功能。据传,亚马逊正在为下一代Echo数字助手开发自己的定制AI芯片。大型芯片公司也越来越倾向于支持像机器学习这样的高级功能,这也迫使他们让设备升级,变得更加节能。今年早些时候,ARM公司推出了两款新芯片:ARM机器学习处理器,这一款芯片主要针对人工智能任务,从翻译到面部识别,另一款则是用于检测图像中人脸的ARM对象检测处理器。

高通最新推出的移动芯片骁龙845配备了图形处理器,并且将人工智能视为重中之重。该公司还发布了骁龙820E芯片,主要面向的是无人机机器人和工业设备。从更长远来说,IBM和英特尔正在开发一种神经形态芯片,其架构是从人类大脑和其惊人的能量效率启发而来。从理论上讲,这可以让IBM的TrueNorth芯片和英特尔的Loihi芯片仅花费传统芯片所需要的能量的一小部分,便可运行强大的机器学习,不过在现阶段,这两种技术仍处于高度实验阶段。

让这些芯片运行与云计算服务一样强大的神经网络将是一个巨大的挑战。但以目前的创新速度来看,离你触手可及真正的人工智能的那一天不会太久。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 处理器
    +关注

    关注

    68

    文章

    20148

    浏览量

    246975
  • 芯片
    +关注

    关注

    462

    文章

    53530

    浏览量

    458886
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106771
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    本帖欲分享在Ubuntu20.04系统中训练神经网络模型的一些经验。我们采用jupyter notebook作为开发IDE,以TensorFlow2为训练框架,目标是训练一个手写数字识别的神经网络
    发表于 10-22 07:03

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    1.算法简介液态神经网络(LiquidNeuralNetworks,LNN)是一种新型神经网络架构,其设计理念借鉴自生物神经系统,特别是秀丽隐杆线虫的
    的头像 发表于 09-28 10:03 656次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    【「AI芯片:科技探索与AGI愿景」阅读体验】+神经形态计算、类脑芯片

    AI芯片不仅包括深度学细AI加速器,还有另外一个主要列别:类脑芯片。类脑芯片是模拟人脑神经网络架构的芯片。它结合微电子技术和
    发表于 09-17 16:43

    神经网络专家系统在电机故障诊断中的应用

    摘要:针对传统专家系统不能进行自学习、自适应的问题,本文提出了基于种经网络专家系统的并步电机故障诊断方法。本文将小波神经网络和专家系统相结合,充分发挥了二者故障诊断的优点,很大程度上降低了对电机
    发表于 06-16 22:09

    MAX78000采用超低功耗卷积神经网络加速度计的人工智能微控制器技术手册

    人工智能(AI)需要超强的计算能力,而Maxim则大大降低了AI计算所需的功耗。MAX78000是一款新型的AI微控制器,使神经网络能够在互联网边缘端以超低
    的头像 发表于 05-08 11:42 712次阅读
    MAX78000采用超低<b class='flag-5'>功耗</b>卷积<b class='flag-5'>神经网络</b>加速度计的人工智能微控制器技术手册

    MAX78002带有低功耗卷积神经网络加速器的人工智能微控制器技术手册

    人工智能(AI)需要超强的计算能力,而Maxim则大大降低了AI计算所需的功耗。MAX78002是一款新型的AI微控制器,使神经网络能够在互联网边缘端以超低
    的头像 发表于 05-08 10:16 597次阅读
    MAX78002带有低<b class='flag-5'>功耗</b>卷积<b class='flag-5'>神经网络</b>加速器的人工智能微控制器技术手册

    NVIDIA实现神经网络渲染技术的突破性增强功能

    近日,NVIDIA 宣布了 NVIDIA RTX 神经网络渲染技术的突破性增强功能。NVIDIA 与微软合作,将在 4 月的 Microsoft DirectX 预览版中增加神经网络着色技术,让开
    的头像 发表于 04-07 11:33 862次阅读

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1301次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
    的头像 发表于 02-12 15:36 1563次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算法是BP
    的头像 发表于 02-12 15:18 1271次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural N
    的头像 发表于 02-12 15:15 1338次阅读

    BP神经网络的基本原理

    BP神经网络(Back Propagation Neural Network)的基本原理涉及前向传播和反向传播两个核心过程。以下是关于BP神经网络基本原理的介绍: 一、网络结构 BP神经网络
    的头像 发表于 02-12 15:13 1505次阅读

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络神经网络由多个神经元组成,神经元之间通过
    的头像 发表于 01-23 13:52 838次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工神经网络模型之所
    的头像 发表于 01-09 10:24 2236次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法