0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

详解硅光电倍增管的结构特点和优势

汽车玩家 来源:传感器专家网 作者:传感器专家网 2020-04-12 17:53 次阅读

光电倍增管(SiPM)具有单光子灵敏度,可以检测从近紫外(UV)到近红外(IR)的光波长。

硅光电倍增管(SiPM)是固态高增益辐射检测器,在吸收光子后会产生输出电流脉冲。这些基于PN结的传感器具有单光子灵敏度,可以检测从近紫外(UV)到近红外(IR)的光波长。

通常,紧凑的固态SiPM可为笨重的光电倍增管提供更好的替代方案,并且适用于感测,量化和定时直至单个光子的所有光水平。

SiPM的应用和优势

SiPM的主要优点包括高增益,低电压操作,出色的定时性能,高灵敏度(低至单个光子)和对磁场的抵抗力。这些特性使其成为从单个光子到数千个光子的光检测应用的理想选择。

SiPM是紧凑的设备,能够承受机械冲击。它们的出色性能使其适用于各种测光(光检测)应用,尤其是在需要精确定时的情况下。

SiPM的典型应用包括生物光子学,LiDAR和3D测距,高能物理,航空粒子物理,分类和回收,危害和威胁检测,荧光光谱,闪烁体,医学成像等。

硅光电倍增管的市场领域包括工业,航空航天,汽车,石油和天然气,电子以及信息通信技术

详解硅光电倍增管的结构特点和优势

流式细胞仪的应用。图片由Hamamatsu提供

制造商经常根据应用和目标光源定制SiPM的物理尺寸,设计和其他参数。例如,无人机应用使用小型化的传感器,而现场伽马光谱操作依赖于物理上更大的组件。此外,还有针对可见光优化的RGB SiPM和针对近紫外线区域的NUV SiPM。

SiPM结构

SiPM由数百或数千个自猝灭的单光子雪崩光电二极管(SAPD)组成,也称为像素或微单元。

每个SAPD都设计为在高于击穿电压时工作,具有一个集成的串联淬火电阻,一个用于标准SiPM的阳极和一个阴极。

详解硅光电倍增管的结构特点和优势

标准SiPM结构;并联的SPAD

一些制造商,例如SensL,除了阳极和阴极外,还具有带有第三输出端子的快速输出SiPM。它在SPAD阳极具有一个集成的快速输出电容器

详解硅光电倍增管的结构特点和优势

SensL快速输出SiPM。图片由安森美半导体提供

在实际应用中,SiPM由数百或数千个并行的微单元组成。这使其能够同时检测多个光子,并在各种光和辐射检测应用中很有用。电输出与像素吸收的光子数量直接相关。

硅光电倍增管的基本操作

微米级的SAPD微型电池设计为在Geiger模式的反向偏置条件下工作,刚好高于击穿电压。

详解硅光电倍增管的结构特点和优势

偏置SiPM。图片由安森美半导体提供 

下图显示了APD的等效电路。通常,PN结用作光子操作的开关。在没有光照射到微电池上的情况下,开关S打开并且结电容CJ上的电压为V BIAS。

详解硅光电倍增管的结构特点和优势

SiPM的等效电路。图片由Hamamatsu提供

当光子降落在微电池上时,它会生成一个电子空穴对。然后,其中一个电荷载流子漂移到雪崩区域,在雪崩区域中它会启动自持雪崩过程,并且电流流动。如果不淬火,电流将无限期流动。

详解硅光电倍增管的结构特点和优势

当吸收光子时,SiPM从微单元输出电流脉冲。图片由 First Sensor提供

开关S马上闭合时雪崩和CJ放电从V的起始BIAS到V BD(击穿电压)过Rs与R的时间常数(APD内部电阻)小号 Ç Ĵ。

随着淬火的发生,开关S断开,V BIAS以时间常数R Q C J为 C J充电。APD处于恢复阶段,并重置回Geiger模式,等待检测到新的光子。

SiPM的特征

光子检测效率(PDE)

光子检测效率或PDE量化了SiPM检测光子的能力。这是指检测到的光子数与到达SiPM的光子数之比。PDE是APD端子两端的过电压ΔV和入射光子的波长λ的函数。

击穿电压

SiPM中的击穿电压(V BD)是导致自我维持雪崩倍增的最小(反向)偏置电压。当V BIAS高于V BD时,SAPD输出电流脉冲。V BIAS与V BD之间的差是控制SiPM工作的过电压ΔV。增加过压ΔV可改善PDE和SiPM性能。但是,有一个上限,超过该上限,噪声和其他干扰(随过电压而增加)就会开始干扰SiPM操作。

击穿电压取决于温度和SPAD的其他特性。因此,数据表通常会指定不同温度下的击穿电压。

详解硅光电倍增管的结构特点和优势

恢复时间

这是从雪崩淬灭到微单元完全复位并获得检测入射光子的能力之间所花费的时间。在恢复期间,微单元会稍微失去检测新入射光子的能力。恢复阶段的时间常数为R Q Ç Ĵ。

温度特性

温度直接影响击穿电压,增益,结电容,暗计数和光子检测效率。特别是,击穿电压在高温下会更高,并且会影响与过电压成正比的增益和光子检测效率。较高的温度还将增加由于热产生的电荷载流子而导致发生暗事件的可能性。

硅光电倍增管中的噪声

半导体杂质和其他因素经常在有光和无光的情况下引起随机输出脉冲。

主要噪声–黑暗事件

热搅动和其他因素通常导致产生随机的电子-空穴对和载流子。如果随机载流子进入APD耗尽区域的雪崩区域,它将穿越高电场区域,在此触发雪崩盖革放电和输出电流脉冲。在没有光的情况下脉冲的产生被称为暗事件。暗计数率是指指定时间段内暗事件的数量,并表示为每秒计数(cps)。

相关噪声

相关噪声是指由先前的光子或暗事件触发的次级雪崩放电的输出。相关噪声的两种主要类型是后脉冲(AP)和光学串扰(OC)事件。

后脉冲

当在雪崩倍增过程中被困在硅中的载流子在SAPD的恢复阶段被放电时,会发生后脉冲。载波最终会产生一个幅度小于原始次级电流的新次级电流脉冲。

详解硅光电倍增管的结构特点和优势

正常SiPM输出脉冲和后脉冲噪声输出图

SiPM中的光串扰

当一个微蜂窝中的一次雪崩触发相邻微蜂窝中的第二次雪崩时,就会发生最佳串扰(OC)。次级放电(雪崩)对输出电流脉冲的净效应是,它会增加输出信号的幅度,从而使其高于入射光子所产生的幅度。

光学串扰(OC)的可能性随着过压而增加。

结论

硅光电倍增器是紧凑的固态光学传感设备,具有高增益并能够检测低至光子水平的光。该技术正在广泛的领域和行业中找到应用,但存在一些缺点,例如噪声,会限制其性能。但是,SiPM技术仍在进步,并且随着它的成熟而具有巨大的潜力。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 雷达
    +关注

    关注

    48

    文章

    2679

    浏览量

    115544
  • 光电倍增管
    +关注

    关注

    3

    文章

    39

    浏览量

    13128
收藏 人收藏

    评论

    相关推荐

    光电池测量光照强度

    我了解到的原理是,光电池的电池内阻远大于R1,且在一定光强范围内,输出电流(uA级别)随光照强度的增加而线性增加,所以我想通过2DU3光电池通过以下电路,将
    发表于 04-02 15:20

    光电效应的应用有哪些 光电效应的基本原理是什么

    光电效应是物质受到光的照射后,电子获得足够的能量从物质中被解离出来的现象。光电效应广泛应用于许多领域,包括光电导、光电池、光电二极管、
    的头像 发表于 02-03 11:20 1440次阅读

    一文读懂CMOS图像传感器

    图像传感器的历史沿革——PMT1.光电倍增管(简称光电倍增管或PMT),真空光电管的一种。工作原理是:由光电效应引起,在PMT入射窗处撞击光电
    的头像 发表于 12-21 17:00 718次阅读
    一文读懂CMOS图像传感器

    电压倍增器电路原理图

    这是一个电压倍增电路。该电路采用倍增器原理来倍增电压。该电路具有一些优点,例如低电流供应、光电倍增管和阴极射线管所需的有吸引力的高电压。除此之外,该电路价格便宜。
    的头像 发表于 12-14 14:35 674次阅读
    电压<b class='flag-5'>倍增</b>器电路原理图

    光电倍增管用于直接飞行时间测距应用(一):直接ToF测距系统的设计

    光电倍增管用于直接飞行时间测距应用(一):直接ToF测距系统的设计
    的头像 发表于 12-07 10:23 320次阅读
    硅<b class='flag-5'>光电倍增管</b>用于直接飞行时间测距应用(一):直接ToF测距系统的设计

    用高速运放搭建电荷灵敏放大器,选择电压型高速运放还是电流高速运放?

    我的信号来自光电倍增管,是电荷脉冲,宽度一般几十ns,需要用高速运放搭建电荷灵敏放大器。如果用电压型高速运放,开环增益Aol随频率增大减小,影响系统分辨率,如果用电流高速运放,反馈中的电容容易使电路不稳定,我该如何选择呢?希望大家给些建议。谢谢。
    发表于 11-24 07:16

    光电倍增管放大器如何选择?

    光电倍增管为滨松的H7422,输出电流0-2uA,采样频率为10MHZ,想输出电压为0-5V,应该选用哪个放大器,跪求大神帮助~
    发表于 11-22 06:17

    试述光电倍增管结构和工作原理与光电管的异同点

    试述光电倍增管结构和工作原理与光电管的异同点  光电倍增管是一种用于探测光信号的电子器件。它可以将微弱的光信号转换成电信号,并且可以引入电子增益,从而提高探测器的灵敏度。在本文中,我
    的头像 发表于 10-18 16:59 2196次阅读

    光电倍增管的输出电路有哪些呢?

    用运算放大器设计电流—电压(I—V)变换电路。输出电压可用V0=-IA×RF表示。图4-3-24是前置放大器的电流—电压变换输出电路。
    的头像 发表于 10-18 10:20 1070次阅读
    <b class='flag-5'>光电倍增管</b>的输出电路有哪些呢?

    吉时利6517B在测试光电倍增管暗电流中的应用

    光电倍增管,作为一种真空电子器件,具有将微弱光信号转换为电信号的卓越功能。其广泛应用于光学测量仪器和光谱分析仪器领域,为测量波长在200至1200纳米范围内的极微弱辐射功率提供了不可或缺的支持。
    的头像 发表于 09-22 14:47 315次阅读
    吉时利6517B在测试<b class='flag-5'>光电倍增管</b>暗电流中的应用

    光电管及光电倍增管#传感器

    传感器电阻电路光电
    未来加油dz
    发布于 :2023年08月14日 18:40:15

    为什么氮化镓比更好?

    度为1.1 eV,而氮化镓的禁带宽度为3.4 eV。由于宽禁带材料具备高电场强度,耗尽区窄短,从而可以开发出载流子浓度非常高的器件结构。例如,一个典型的650V横向氮化镓晶体,可以支持超过800V
    发表于 06-15 15:53

    DT640二极低温温度传感器

    DT640系列二极温度传感器选用了专门适用于低温温度测量的二极。相比普通二极,具有重
    发表于 05-31 10:24

    小型超导纳米线单光子探测系统,为机载平台提供高精度探测数据

    根据工作机理,单光子探测器主要有光电倍增管(PMT)、单光子雪崩二极管(SPAD)、超导纳米线单光子探测器(SNSPD)等类型。其中,SNSPD因其具有探测效率高、时间精度高、探测速度快和暗计数率低等特点,并且通过探测器结构设计
    的头像 发表于 05-10 09:37 869次阅读
    小型超导纳米线单光子探测系统,为机载平台提供高精度探测数据

    1064nm TO8、TO31系列,四象限光电二极管

    四象限探测器、光电倍增管、接收头、APD(雪崩二极)、InGaAs APD、发射(紫外、可见光、红外)、光敏二极、光敏三极、PIN
    发表于 05-09 17:10