0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

阿科玛新型电解液添加剂LiTDI能提升电池寿命

汽车玩家 来源:盖世汽车 作者:Elisha 2020-04-10 17:09 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

盖世汽车讯 在电动汽车市场上,随着锂离子电池需求激增,研究人员正在加紧开发新的电解质。新电解质不仅需要保证电池的性能、寿命和安全性,还要满足高能量负极材料(如硅)和正极材料(NMC 811等)的要求。高纯度电解质能够减少电池副反应,避免电池过早退化,具有重要意义。

据外媒报道,阿科玛(Arkema)公司推出的新型电解液添加剂LiTDI,不仅能延长电池寿命,加快充电速度,对于电动汽车必需的高容量电池材料,还解决了材料纯度和稳定性问题。

LiTDI,锂4,5-二氰基-2-(三氟甲基)异吡唑,最初由华沙理工大学(WUT)发现,华沙理工大学、法国国家科学研究中心(CRNS)和法国亚眠大学(University of Amiens)合作研究其合成和提纯。Gregory Schmidt博士在法国亚眠大学Michel Armand教授团队时,就曾尝试将这种锂盐应用于锂离子电池中,并重点研究合成和电解质配方两个方面。研究结果表明,用这种锂盐制成的添加剂,可极大提升电解质性能。研究人员将这种分子整合至阿科玛强大的电池平台和可再生能源解决方案。

LiTDI具有诸多优点,其分子结构经过量身打造,可以极大提升电化学稳定性,促进离子解离。异吡唑环通过共振效应促进负电荷解离。其次,两个腈基的电负性/重量比得到优化,可以进一步促进正电荷解离。最后,附着在异吡唑环上F3基团,有益于保持电化学稳定性。循环伏安法研究表明,该分子在低于4.6 ~ 4.7V时没有反应活性。此外,DSC研究表明,此类分子具有极高的热稳定性,只有温度高于250℃时才会降解,对于长期高压高温工作的锂离子电池来说,堪称最佳选择。

在电解液中,除了固有的稳定性,LiTDI还是重要的除湿剂。锂离子和碳腈基团与水分子相互作用,通过氢键捕捉水分子,从而有效地抑制LiPF5的水解。LiPF5是LiPF6在负极上的分解产物,是一种强路易斯酸,是电解质溶剂降解的主要原因。此外,由于LiPF6的降解,碳腈基团与HF分子相互作用,可以进一步减轻正极侧的寄生反应。通过减少杂质对不同电解质成分的影响,只需添加1%的LiTDI,就可提高电解质稳定性,并延长电池寿命。

另外,LiTDI有助于在铝集流器上形成钝化层,也能对电池性能产生重要影响。研究人员试图寻找适合高压应用的LiPF6替代品,但是,正极集电器上出现的腐蚀现象,能够增加内部电阻率,并降低正极容量。对于包含基于替代盐(LiFSI等)新电解质的电池来说,由LiTDI形成的稳定铝保护层,有助于增加电池寿命,支持使用高压电极(如NMC 622)。

值得一提的是,LiTDI 有助于形成稳定的固体电解质界面膜(SEI),保护负极不受有机溶剂降解反应的影响。LiTDI与传统SEI添加剂(如FEC或VC)相结合,通过对CF3基团去氟化,帮助LiF矿物相的生长,同时促进聚合物相的形成。由此产生的SEI膜更薄,而且交联强劲,有助于降低电阻率,减少初始容量损失。这种现象不仅出现在石墨负极上,也出现在硅基正极上。对于电池寿命和电池内阻来说,SEI添加剂能起到更为重要的作用。

综上所述,在锂离子电池中,LiTDI添加剂与传统的SEI添加剂协同作用,电池阻抗降低,明显提高快速充放电性能。另外,这种盐可以提升电解质纯度和稳定性,使传统电解质能够高温循环(> 45℃)。最后,LiTDI是一种很好的电解液添加剂,不论采用石墨负极,还是硅基正极,都可以明显延长电池寿命。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电解液
    +关注

    关注

    10

    文章

    875

    浏览量

    23717
  • 电池
    +关注

    关注

    85

    文章

    11360

    浏览量

    141308
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    新能源储电解液怎么选择位传感器?

    电解液大多具有强腐蚀性、高导电性,部分还存在挥发性强、对洁净度要求高的特点,这使得位传感器选型需重点攻克 防腐蚀、防污染、适配工况精度三大核心难题。选型时需先明确电解液特性与使用场景,再从传感器类型、材质、防护性能等维度筛选
    的头像 发表于 11-24 15:17 789次阅读

    新能源储电解液高压输送与充装系统的安全核心

    在大容量新能源储系统(如百兆瓦级液流电池电站)中,电解液需通过高压输送(压力通常0.5-2MPa)实现快速循环与充装,以满足系统高功率输出需求。高压环境下,
    的头像 发表于 11-21 16:57 1812次阅读

    新能源储电解液低温输送与保温系统的安全监测关键

    在高纬度寒区或低温储场景中,新能源储电解液需在-20℃至-40℃的低温环境下进行输送与存储,以保障储系统的稳定运行。低温环境会导致电解液
    的头像 发表于 11-20 18:10 1825次阅读

    新能源储电解液在线再生循环的动态监测核心

    提升新能源储系统的经济性与环保性,电解液在线再生与循环利用技术逐渐成为行业研究热点。该技术通过在储系统运行过程中,对性能衰减的电解液
    的头像 发表于 11-20 18:07 1783次阅读

    新能源储电解液生产制备环节的质量把控关键-非接触水位液体检测传感器

    新能源储电解液的生产制备是保障储系统性能的源头环节,涵盖原料配比、混合搅拌、过滤提纯、灌装封装等工序。各工序对电解液位控制精度要求极
    的头像 发表于 11-18 16:45 1303次阅读
    新能源储<b class='flag-5'>能</b><b class='flag-5'>电解液</b>生产制备环节的质量把控关键-非接触水位液体检测传感器

    退役储电解液回收处理环节的环保监测关键-电容式位传感器

    随着新能源储系统规模化应用,退役电解液的回收处理成为保障环境安全、实现资源循环的重要环节。退役电解液成分复杂,含有重金属离子、腐蚀性盐类及有机杂质,且不同类型储
    的头像 发表于 11-18 16:42 1183次阅读
    退役储<b class='flag-5'>能</b><b class='flag-5'>电解液</b>回收处理环节的环保监测关键-电容式<b class='flag-5'>液</b>位传感器

    冠坤电解电容的 “长寿密码”:特制抗干涸电解液,家用设备可服役 12 年 +

    在电子元器件领域,电解电容的寿命一直是制约设备可靠性的关键因素。冠坤电子通过自主研发的特制抗干涸电解液技术,成功将电解电容的工作寿命
    的头像 发表于 09-02 15:41 532次阅读

    电解电容的 “环保转身”:无汞电解液如何让它从 “电子垃圾” 变 “可回收物”?

    近年来,随着全球环保法规日益严格和电子废弃物问题日益突出,铝电解电容这一电子行业的基础元件正经历着一场深刻的"环保革命"。传统铝电解电容因含汞电解液而被贴上"电子垃圾"的标签,而新型
    的头像 发表于 08-19 17:04 542次阅读
    铝<b class='flag-5'>电解</b>电容的 “环保转身”:无汞<b class='flag-5'>电解液</b>如何让它从 “电子垃圾” 变 “可回收物”?

    锂离子电池电解液浸润机制解析:从孔隙截留到工艺优化

    在锂离子电池制造领域,美光子湾始终怀揣着推动清洁能源时代加速到来的宏伟愿景,全力助力锂离子电池技术的革新。在锂离子电池制造过程中,电解液
    的头像 发表于 08-05 17:49 1851次阅读
    锂离子<b class='flag-5'>电池</b><b class='flag-5'>电解液</b>浸润机制解析:从孔隙截留到工艺优化

    攻克锂电池研发痛点-电解液浸润量化表征

    引言 电解液浸润性是影响锂离子电池性能的关键因素,直接关系到界面反应均匀性、离子传输效率及循环寿命。当前行业普遍存以下痛点: 材料层级:粉末/极片孔隙结构差异导致浸润速率波动 工艺层级:辊压、涂布等
    发表于 07-14 14:01

    电解液自动再平衡技术突破!全钒液流电池长期储效率提升至 84.66%

    电子发烧友网综合报道 在“双碳”目标加速落地的背景下,全钒液流电池(VRFB)凭借安全性高、循环寿命长、容量可灵活扩展等优势,成为大规模储领域的热门选择。然而,其长期运行中电解液失衡
    发表于 05-24 01:13 1867次阅读

    推出一站式前沿电池材料解决方案 | CIBF 2025中国国际电池技术展览会

    、外部以及下一代电池前沿技术的全面解决方案,从优化电芯性能到提升热管理与绝缘安全,再到干法、半固态及固态电池等新技术,
    的头像 发表于 05-15 23:02 386次阅读
    <b class='flag-5'>阿</b><b class='flag-5'>科</b><b class='flag-5'>玛</b>推出一站式前沿<b class='flag-5'>电池</b>材料解决方案 | CIBF 2025中国国际<b class='flag-5'>电池</b>技术展览会

    非接触式位传感器精准检测电解液位优选方案

    在现代化工业生产中,电解液位检测是一项至关重要的任务,其准确性直接关系到设备的稳定运行和产品质量。传统接触式位传感器由于直接接触电解液,容易受到腐蚀、污染和粘附等问题,从而导致测量
    的头像 发表于 04-12 10:53 1047次阅读
    非接触式<b class='flag-5'>液</b>位传感器精准检测<b class='flag-5'>电解液</b><b class='flag-5'>液</b>位优选方案

    水系电解液宽电压窗口设计助力超长寿命水系钠离子电池

    【研究背景】水系钠离子电池(ASIBs)具有高安全、低成本、快速充电等优点,在大规模储中显示出巨大的潜力。然而,传统的低浓度水系电解液(salt-in-water electrolytes
    的头像 发表于 12-20 10:02 2660次阅读
    水系<b class='flag-5'>电解液</b>宽电压窗口设计助力超长<b class='flag-5'>寿命</b>水系钠离子<b class='flag-5'>电池</b>

    离子液体添加剂用于高压无负极锂金属电池

    ,醚溶剂氧化受到抑制,铝腐蚀加剧。因此,在使用LiFSI基浓缩电解质时,在不牺牲镀锂/剥离效率的情况下抑制LiFSI基电解质的Al腐蚀至关重要。其中,电解添加剂已成为抑制Al腐蚀的最
    的头像 发表于 12-10 11:00 2082次阅读
    离子液体<b class='flag-5'>添加剂</b>用于高压无负极锂金属<b class='flag-5'>电池</b>