0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于为什么CAN总线支线长度不能太长?

黄工的嵌入式技术圈 来源:黄工的嵌入式技术圈 作者:黄工的嵌入式技术 2020-03-01 11:51 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

CAN总线网络在应用时,工程师常常会建议总线支线不要太长,那么为什么CAN总线支线不能太长,如果某些环境下必须使用长支线又该怎么办呢?

CAN网络的拓扑种类

控制器局域网CAN(Controller Area Network),是国际上应用最广泛的现场总线之一,最初是由德国Bosch公司设计的,为解决现代汽车中众多控制单元、测试仪器之间的实时数据交换而开发一种串行通信协议。CAN网络的拓扑结构主要有线形拓扑、星形拓扑、树形拓扑和环形拓扑等。

线形结构如下图所示,其特点是一条主干总线,在总线上分出支线到各个节点,其优点在于布线施工简单,阻抗匹配规则固定,接线比较方便,缺点是拓扑不够灵活,在一定程度上影响通讯距离;

星形拓扑如下图所示,其特点是每个节点通过中央设备连到一起,优点是容易扩展,缺点是一旦中央设备出故障会导致总线集体故障,而且分支线长不同,阻抗匹配复杂,可能需要通过一些中继器或集线器进行扩展;

树形拓扑如下图所示,其特点是分支比较多,且分支长度不同,优点是布线方便,缺点是网络拓扑复杂,阻抗匹配困难,通讯中极易出现问题,必须加一些集线器设备;

环形拓扑如下图所示,其特点是将CAN总线头尾相连,形成环状,优势是线缆任意位置断开,总线都不会出现问题,缺点是信号反射严重,无法用于高波特率和远距离传输。

虽然CAN总线可以有多种网络拓扑,但在实际应用当中比较推荐使用线形拓扑,且在IOS-11898-2中有高速CAN物理层规范,其中推荐的CAN网络拓扑也是线形拓扑,下面就针对线形拓扑网络CAN支线过长问题进行分析。

支线过长带来的问题

在讲CAN支线之前,我们来看一个CAN的波形图,如下图所示,大家仔细查看CAN波形图,会发现CAN波形上存在明显的上升沿和下降沿台阶现象,因为台阶的存在,从而引起波特率变化,导致接收节点采样出错(也称位宽错误)。

边沿台阶出现的源头主要是CAN节点的分支,分支过长形成的反射就变强,将会导致位宽度失调的错误。ISO11898中只规定1M波特率下分支不超过0.3米,支线过长会直接导致总线阻抗匹配问题发生,阻抗匹配是指信号源或者传输线跟负载之间达到一种适合的搭配,阻抗匹配主要为了调整负载功率和抑制信号反射,所以一旦阻抗匹配出现问题,就出现了上图中的上升沿和下降沿的台阶。

解决支线过长的办法

如果我们的总线存在支线过长的问题,那么该怎么办呢?我们下面提供几种解决方案:

1、减小分支长度

在CAN网络布局的根源上解决问题的方式就是减少CAN节点的分支长度,从而降低信号反射,保证位宽的稳定性。如上图波形实验中,其它条件不变,只将分支长度减少为20cm,此时并没有看到边沿台阶的出现。由此可见,减少分支长度是消除边沿台阶的最直接方式。

2、长分支上加适当电阻

在网络布局无法改变,分支引起的信号反射必须存在的情况下。最实用的方法就是在长分支末端加上电阻,消除信号反射。同样的在上述实验中,在分支节点处加上一个200Ω的电阻,其它条件不变进行通信实验。下图为实验的CAN波形图,此时可以看到边沿台阶已被消减,但是加了电阻之后差分电压变小,注意差分电压不得小于0.9V。这里值得一提的是:阻值大于500Ω的电阻吸收反射的能力很弱,所以在末端挂电阻的时候应小于500Ω。

3、增加CAN中继器或集线器

当然很多场合是在出现了问题之后才发现支线过长,当重新布线或更改节点本身都无法操作的情况下,我们也有解决方案,那就是在过长的支线上增加CAN中继器,典型的如致远电子CANBridge,甚至可以支持不同波特率的CAN网络的连接。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • CAN总线
    +关注

    关注

    145

    文章

    2020

    浏览量

    134689
  • 控制器局域网

    关注

    0

    文章

    21

    浏览量

    7162
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    CAN 总线自定义协议使用说明

    关于can总线的设置
    发表于 11-05 17:00 1次下载

    极细同轴线长度差如何影响高速信号同步?

    在高速信号系统中,极细同轴线束的长度差会直接影响信号同步、差分完整性和系统误码率。随着速率不断提高,设计人员对线长匹配的要求也越来越严格。只有在设计、制造和应用的全过程中都重视这一问题,才能确保系统的稳定性和可靠性。
    的头像 发表于 09-22 15:02 1270次阅读
    极细同轴<b class='flag-5'>线长度</b>差如何影响高速信号同步?

    120Ω的秘密:CAN总线终端电阻的重要性

    CAN总线作为一种广泛应用的工业通信协议,其终端电阻的作用不容忽视。本文将详细探讨CAN总线终端电阻的重要性及其在通信中的关键作用。CAN
    的头像 发表于 08-08 11:35 788次阅读
    120Ω的秘密:<b class='flag-5'>CAN</b><b class='flag-5'>总线</b>终端电阻的重要性

    广成科技CANFD转CAN总线GCAN-418的优势

    作为CAN总线的升级产品,CANFD相较于传统的CAN总线,拥有如下几个方面的优势。
    的头像 发表于 08-05 11:47 903次阅读
    广成科技CANFD转<b class='flag-5'>CAN</b><b class='flag-5'>总线</b>GCAN-418的优势

    CAN总线电容过大?三种解决方案来了

    在新能源汽车路试中,CAN总线传输异常是一个常见问题。本期我们将探讨由于总线电容过大导致的下降沿过缓问题,并介绍三种有效的解决方案。CAN总线
    的头像 发表于 07-22 11:36 476次阅读
    <b class='flag-5'>CAN</b><b class='flag-5'>总线</b>电容过大?三种解决方案来了

    CAN总线采样点不一致的危害

    ,用于验证消息是否被正确接收。采样点不一致可能导致节点无法正确采样确认位,触发重传,降低网络效率。 假设一个汽车CAN网络包含多个电子控制单元(ECU),目标位速率为500 kbps,总线长度为50米
    发表于 06-07 08:55

    如何评估CAN总线信号质量

    关键因素: 电缆长度和质量 :较长的电缆可能导致信号衰减和延迟,而低质量电缆可能无法有效屏蔽电磁干扰(EMI)。 终端电阻 :CAN总线需要在两端各安装120Ω终端电阻,以防止信号反射。缺失或不正确
    发表于 06-07 08:46

    线束导线长度的定义有哪些?重要吗?

    关于线束导向长度的定义,定义了适当的、准确的导线长度,可用于线束制造。
    的头像 发表于 03-27 11:46 958次阅读

    CANape中记录总线报文及生成BLF文件的培训视频#CANape #汽车CAN总线 

    CAN总线
    北汇信息POLELINK
    发布于 :2025年03月06日 11:40:27

    CAN总线模拟器的使用指南 CAN总线网络的安全性分析

    CAN总线模拟器的使用指南 CAN总线模拟器(如ICSim)是一种用于模拟CAN总线通信的工具,
    的头像 发表于 12-23 09:16 3634次阅读

    CAN总线在工业自动化中的作用

    CAN(Controller Area Network)总线在工业自动化中发挥着至关重要的作用。它是一种高效的现场总线系统,以其高速、可靠和灵活的特点,成为连接工业自动化系统中各种设备的优选方案
    的头像 发表于 12-23 09:12 1933次阅读

    如何使用Arduino实现CAN总线通信呢

    CAN(Controller Area Network)总线是一种常用于汽车和工业控制系统的串行通信协议,以其高可靠性和实时性而闻名。Arduino,作为一种流行的开源微控制器平台,可以通过附加
    的头像 发表于 12-23 09:06 2817次阅读

    CAN总线的扩展功能及其应用

    CAN总线以其高可靠性、实时性和灵活性在现代电子系统中扮演着重要角色。随着技术的发展,CAN总线也在不断扩展其功能,以适应更广泛的应用需求。 1.
    的头像 发表于 12-23 09:04 2250次阅读

    使用CAN总线进行数据采集的方法

    使用CAN总线进行数据采集的方法通常涉及一系列步骤,这些步骤确保了数据的准确采集、处理和存储。以下是一个详细的方法指南: 一、了解CAN总线系统 首先,需要对
    的头像 发表于 12-20 18:18 3460次阅读