0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能帮助你延缓大脑老化

汽车玩家 来源:网易科技 作者:Shelly Fan 2019-11-20 16:12 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

“延缓大脑老化”听起来就像是个不切实际的广告噱头,但实际上,这种幻想在科学的支持下却有可能成为现实。“大脑年龄”并不能反映出人的实际年龄的平均功能状态,更多是与相对于大脑实际年龄的衰老程度有关。我们都知道,尽管有些人看起来年龄已经很大,但他们的思维依然敏捷,且行动依然灵活。

当你以为在飞机上和你聊天的那个女人只有40多岁,但她的大脑年龄已经是70多岁时,你会感到难以置信。正如“大脑年龄”名字所指的那样,这个概念希望能够捕捉到认知分离背后的生物复杂性。

这不仅仅是纯粹的学术乐趣。长寿研究人员越来越想认为,你活了多长时间并不是预测整体健康的最佳指标。精确而简单地测量某个人真实的生物大脑年龄,可能成为更有效的警示方案。毕竟,如果你知道自己的大脑老化得比预期的更快,就可以及早干预这个过程。

发表在《自然神经科学》(Nature Neuroscience)杂志上的一项研究,将三个完全不同的领域融入到单一的算法中,这些领域包括神经科学、长寿和机器学习,该算法可以纯粹基于MRI(核磁共振)扫描来预测某人的大脑年龄。

这项研究使用了年龄跨度超过80多岁的近5万人的数据,首次梳理了常见的大脑疾病如何影响大脑老化,如抑郁症和自闭症。更重要的是,该团队深入挖掘了来自英国生物银行的人类基因组数据,精确定位了一组与神经疾病相关的基因,特别是加速大脑老化的基因。

挪威奥斯陆大学的研究作者托拜厄斯·考夫曼(Tobias Kaufmann)说:“我们揭示了与健康个体大脑老化明显有关的基因,它们与我们常见的大脑疾病有关的基因重叠。”

这种“大脑年龄差距”指标的直接使用,可以作为大脑衰老的生物标志物,它可以帮助医生对他们的老年患者做出更明智的诊断。

但密苏里州圣路易斯华盛顿大学医学院的珍妮·拜思特博斯博士(Janine Bijsterbosch)说,除了这项研究的发现外,它最重要的贡献可能是确认了跨学科方法的有效性,这种方法“只有通过研究大量人群的脑部扫描才有可能”涵盖扫描仪、地点和设置。

想要进行转换?来自单个实验室的数据不再足以寻找微小的、复杂的但强大的大脑老化标志,或其他神经学测量和健康见解。为了更好地揭示我们大脑的奥秘,跨越种族和社会经济鸿沟,我们需要认识并在研究中利用这样的策略,即“人多力量大”。

大脑年龄与健康寿命

2015年末,《自然医学》(Nature Medicine)杂志上的一系列专家评论,巩固了长寿研究的一种新兴趋势。与其试图延长寿命相比,目前的重点应该更多地放在延长健康寿命上,即人可以在没有疾病的情况下存活多久,或者将常见年龄相关疾病的发生推迟多长时间。

这立刻带来了一个问题:如何衡量某个人的“真实”生物学年龄?这是个尚未解决的难题。但是对于大脑来说,有个标志正发挥主导作用,即大脑年龄差距,或指某人实际年龄和大脑年龄之间的差异。这个指标可以表明,某人的大脑比正常情况下衰老得更快或更慢。

控制大脑在整个生命周期中成熟和变化速度的“分子管弦乐队”在大脑结构中扮演着重要的角色,但它可以使用MRI来测量。同样,决定神经回路物理连接的“生物舞蹈”也是自闭症、精神分裂症、双相情感障碍或抑郁症等脑部疾病的基础。

这导致研究团队提出这样的问题:有没有方法可以使用MRI扫描来测量某人的大脑年龄差距?不同的精神障碍会发生什么变化?我们能否将大脑年龄与特定的基因联系起来,揭示那些加速和延缓大脑衰老的基因?

规模庞大的研究

考夫曼和他的同事不是第一个尝试解决这个问题的人,但他们肯定是最雄心勃勃的。他们解释说,以前的研究都是“小打小闹”,因为他们只关注有限的年龄范围,通常关注某种单一的精神障碍,抑或是最多几百人的规模。这些研究不能提供整个生命周期内大脑结构变化的整体动态图像。

由于没有任何实验室能够提供他们需要的数据,为此该团队决定从几个地方收集MRI扫描数据,这些数据由不同的MRI扫描仪在不同的设置下获得。过去,这简直是疯狂之举,因为这些变化使得苹果与苹果之间的图像比较变得极其困难。

使用烹饪作为类比,这就像试图辨认出同一道菜的数十万个手写菜谱,而每个菜谱都使用一系列单位和缩写以个人格式书写而成,并试图破译某个平均的“基线”食谱,以充分地判断所有其他菜谱的准确性和价值。

研究团队依靠一系列先进的数据方法,将45615人的数据转化为标准化集合,这是一项耗费大量精力、时间和反复试验的任务。作为一种健全性检查,他们随后将这些信息包括在他们的机器学习算法中,以便再次检查潜在的标准化错误。接下来,使用超过35000名3至89岁的健康人的数据,他们训练人工智能来预测正常的大脑老化轨迹。然后用另外4353名健康人的数据验证了该算法。最后,研究小组比较了近5800名患有各种脑部疾病的人的脑部扫描,将每个人的脑部年龄与大体轨迹相匹配。

研究人员有了几个发现。大脑年龄差距最大的是严重的精神障碍,包括精神分裂症、多发性硬化症和痴呆症。相比之下,发育性脑疾病,如自闭症和注意缺陷多动障碍(ADHD),似乎并没有特别影响大脑年龄。

抛开大脑的全面变化不谈,研究小组还发现,导致大脑年龄差距的脑部区域就是那些已经牵涉到这种特定精神障碍的区域。例如,在阿尔茨海默病中,大脑皮层下区域的结构慢慢枯萎,它们也是触发由算法测量的大脑年龄差距的区域。

研究人员称,这是个重要的验证。它表明,人工智能可以将来自大量大脑图像的信息浓缩成可解释的评分,而不会完全丢失有关单个大脑区域的信息。换句话说,有些疾病可能会导致一个大脑区域比其他区域更快地老化。人工智能可以破译这些差异并指导潜在的治疗。

遗传联系

聚合数据集的另一个好处在于,它包含了与脑部扫描相关的遗传信息。加速的大脑老化可能是遗传不良基因的结果,而有害的环境或生活方式的选择会加剧这种情况。研究人员说,分析基因是开始探索影响大脑老化轨迹变化因素的一种方式。

也许并不令人惊讶的是,一项分析表明,大脑的年龄差距至少部分是可遗传的。研究小组还发现了某些基因,这些基因似乎对大脑年龄差距和大脑紊乱都有影响。也就是说,每个基因因人而异,也都有各自不同的影响。

研究人员称:“与健康人脑年龄差距相关的遗传变异与在自闭症中观察到的注意缺陷多动障碍(ADHD)部分重叠。这些结果表明,大脑年龄差距和大脑疾病之间存在共同的分子遗传机制。”

个体大脑年龄

人工智能是帮助确定个体大脑年龄的第一步。拜思特博斯博士说,从平均结果到单独的扫描是困难的,因为MRI扫描相对来说比较嘈杂,人与人之间的变异性很大。还需要更多的研究,但鉴于其规模庞大,这项研究为此打下了坚实的基础。

最终,研究人员希望基于某个人的基因,在高危脑部疾病发作之前,预测他们的大脑年龄差距,并跟踪疾病的进展情况,以帮助调整他们的治疗方案。

拜思特博斯博士说:“我们距离以这种方式利用大脑年龄差距还有很长的路要走。”但随着多项大规模生物标记物研究的进行,这个神经科学与人工智能交叉的典范仅仅是一个开始。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1813

    文章

    49785

    浏览量

    261931
  • MRI
    MRI
    +关注

    关注

    0

    文章

    65

    浏览量

    17247
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    利用超微型 Neuton ML 模型解锁 SoC 边缘人工智能

    的框架小 10 倍,速度也快 10 倍,甚至可以在最先进的边缘设备上进行人工智能处理。在这篇博文中,我们将介绍这对开发人员意味着什么,以及使用 Neuton 模型如何改进您的开发和终端
    发表于 08-31 20:54

    人工智能+”,走老路难赚到新钱

    昨天的“人工智能+”刷屏了,这算是官方第一次对“人工智能+”这个名称定性吧?今年年初到现在,涌现出了一大批基于人工智能的创业者,这已经算是AI2.0时代的第三波创业潮了,第一波是基础大模型,第二波
    的头像 发表于 08-27 13:21 549次阅读
    “<b class='flag-5'>人工智能</b>+”,走老路难赚到新钱

    挖到宝了!人工智能综合实验箱,高校新工科的宝藏神器

    家人们,最近在研究人工智能相关设备,挖到了一款超厉害的宝藏——比邻星人工智能综合实验箱,必须来给大伙分享分享!可☎(壹捌伍 柒零零玖 壹壹捌陆) 一、开箱即学,便捷拉满 这个实验箱真的是为使用者
    发表于 08-07 14:30

    挖到宝了!比邻星人工智能综合实验箱,高校新工科的宝藏神器!

    家人们,最近在研究人工智能相关设备,挖到了一款超厉害的宝藏——比邻星人工智能综合实验箱,必须来给大伙分享分享!可☎(壹捌伍 柒零零玖 壹壹捌陆) 一、开箱即学,便捷拉满 这个实验箱真的是为使用者
    发表于 08-07 14:23

    超小型Neuton机器学习模型, 在任何系统级芯片(SoC)上解锁边缘人工智能应用.

    Neuton 是一家边缘AI 公司,致力于让机器 学习模型更易于使用。它创建的模型比竞争对手的框架小10 倍,速度也快10 倍,甚至可以在最先进的边缘设备上进行人工智能处理。在这篇博文中,我们将介绍
    发表于 07-31 11:38

    迅为RK3588开发板Linux安卓麒麟瑞芯微国产工业AI人工智能

    迅为RK3588开发板Linux安卓麒麟瑞芯微国产工业AI人工智能
    发表于 07-14 11:23

    最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)

    人工智能大模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的智能工具,大模型正在工作生活
    发表于 07-04 11:10

    开售RK3576 高性能人工智能主板

    ,HDMI-4K 输出,支 持千兆以太网,WiFi,USB 扩展/重力感应/RS232/RS485/IO 扩展/I2C 扩展/MIPI 摄像头/红外遥控 器等功能,丰富的接口,一个全新八核拥有超强性能的人工智能
    发表于 04-23 10:55

    人工智能对智慧园区的提升和帮助

    ,进一步提升了智慧园区的运营效率、安全性和用户体验,为园区的可持续发展提供了强有力的支持。以下是人工智能对智慧园区的提升和帮助的具体体现。 1.提升运营效率 人工智能通过自动化技术和智能
    的头像 发表于 03-13 14:39 781次阅读

    AI人工智能隐私保护怎么样

    在当今科技飞速发展的时代,AI人工智能已经深入到我们生活的方方面面,从医疗诊断到交通调度,从教育辅助到娱乐互动,其影响力无处不在。然而,随着AI人工智能的广泛应用,其安全性问题也备受关注。那么,AI
    的头像 发表于 03-11 09:46 999次阅读
    AI<b class='flag-5'>人工智能</b>隐私保护怎么样

    成都华微与具身科技深化人工智能和机器人领域合作

    近日,成都华微与四川具身人形机器人科技有限公司(具身科技)在成都高新区四川人工智能实验室展开会谈,双方围绕机器人智慧大脑与精密控制两大关键核心方向展开交流,在芯片层面达成深度合作意向,携手开启人工智能与机器人技术创新融合新篇章。
    的头像 发表于 02-28 16:58 986次阅读

    充电桩“耐力大考验”:老化负载研究,为持久续航保驾护航

    行业发展:为充电桩行业标准制定提供数据支撑,推动行业技术进步和产品升级。 三、未来展望:更智能、更精准的老化测试 随着人工智能、大数据等技术的不断发展,充电桩老化负载研究也将朝着更
    发表于 02-28 14:42

    DeepSeek对人工智能领域的启示

    本文作者是 IBM 董事长兼首席执行官 Arvind Krishna。他认为,社会各界不应止步于应用人工智能,更要成为人工智能的共建者。
    的头像 发表于 02-07 09:46 1466次阅读

    人工智能和机器学习以及Edge AI的概念与应用

    作者:DigiKey Editor 人工智能(AI)已经是当前科技业最热门的话题,且其应用面涉及人类生活的各个领域,对于各个产业都带来相当重要的影响,且即将改变人类未来发展的方方面面。本文将为您介绍
    的头像 发表于 01-25 17:37 1617次阅读
    <b class='flag-5'>人工智能</b>和机器学习以及Edge AI的概念与应用

    人工智能推理及神经处理的未来

    人工智能行业所围绕的是一个受技术进步、社会需求和监管政策影响的动态环境。机器学习、自然语言处理和计算机视觉方面的技术进步,加速了人工智能的发展和应用。包括医疗保健、金融和制造业在内的各个行业对自动化
    的头像 发表于 12-23 11:18 885次阅读
    <b class='flag-5'>人工智能</b>推理及神经处理的未来