0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

PCB传输线的损耗情况怎么样

PCB线路板打样 来源:ct 2019-09-08 14:10 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

本文深入介绍了PCB传输线路的损耗问题。我们将讨论导体损耗,信号走线电阻,介质损耗,电介质的损耗角正切/耗散因数以及总插入损耗。

In我们之前的PCB传输线系列,我们为您提供了传输线的特征阻抗:

PCB传输线的损耗情况怎么样

其中:

R =每单位长度线路导体的电阻(pul)
L =线路导体的电感线圈pul
G =信号和返回路径之间的电导(由于介电材料)pul
C =信号和返回路径之间的电容pul(它随着电介质的Dk而增加)

对于均匀的传输线, R,L,G,C在其上的每个点都是相同的,因此Zc在传输线上的每个点都具有相同的值。

对于频率行进的正弦信号在线的方向上,各点和时间的电压和电流表达式都是giv en by:

其中α和β是的实部和虚部,由下式给出:

在我们感兴趣的频率,R <<ωL和G <<ωC,所以:

And:

这样:

这代表一个波长以每单位长度传播延迟传播,并随着沿线传播而衰减。

长度为l的传输线的信号衰减系数为:

衰减或信号损耗因子通常用dB表示。

这样dB损耗与线路长度成正比。因此,我们可以将上述单位长度的dB损失表示为:

我们通常省略减号,请记住它是一个dB损耗 - 总是从信号强度中减去dB。

以上也称为传输线每单位长度的总插入损耗,写为:

现在R/Z0组分的损耗与R成正比,每单位长度的电阻称为导体损耗,这是由于形成传输线的导体的电阻。它由'alfa'C表示。 GZ0部分损耗与G - 电介质材料的电导成正比,称为介电损耗 - 用'alfa'd表示。

导体损失

其中R是每英寸导体的电阻。

现在PCB传输线中有两根导线 - 信号走线和返回路径。

通常返回路径是平面,但返回电流不均匀分布在平面上 - 我们可以证明大部分电流集中在宽度为宽度的三倍宽度的条带上。信号跟踪和信号跟踪下方。

可以近似:

这样:

信号走线电阻

信号走线的整个横截面积平均参与信号电流?答案是:并非总是如此 - 它取决于信号的频率。

在非常低的频率 - 直到大约1 MHz,我们可以假设整个导体参与信号电流,因此Rsigis相同作为信号轨迹的'alfa'C电阻,即:

其中:

ρ=铜电阻,单位为欧姆 - 英寸

W =以英寸为单位的迹线宽度(例如:5密耳,即。 0.005英寸50欧姆的痕迹)
T =以英寸为单位的迹线厚度(通常为½盎司至10盎司,即0.0007“至0.0014”)

例如,对于5密耳宽的迹线:

出于我们的目的,我们对频率为f的A/C电阻感兴趣。在这里,皮肤效果进入了画面。根据趋肤效应,频率f处的电流仅传播到称为导体趋肤深度的某个深度,即:

下表给出了不同频率下趋肤深度的值:

我们从上面看到4 MH ,表皮深度等于1盎司铜厚度,在15 MHz时,它等于½盎司铜厚度。超过15 MHz时,信号电流仅在深度小于0.7 mil时传播,并且随着频率的增加而不断减小。

由于我们关注的是高频行为,我们可以放心地假设T是在我们感兴趣的频率上大于皮肤深度,因此我们将使用皮肤深度而不是在信号阻力公式中使用T.所以我们现在有:

我们使用2δ而不是δ,因为电流使用导体的所有外围 - 技术上2W可以用2代替( W + T)。

返回信号沿最靠近信号轨迹的表面仅沿一个厚度δ传播,其电阻可近似为:

由于导体上的铜表面粗糙度导致的导体损耗增加 - 电介质界面:

重要的是要知道在电路板中,“铜导体 - 介电界面”从不光滑(如果光滑,铜导体很容易从介电表面剥离);它被粗糙化成齿状结构,以增加电路板上导体的剥离强度。

对于典型的覆铜层压板,界面看起来像:

PCB传输线的损耗情况怎么样

其中:

hz =牙齿的峰高峰值

hz是衡量表面粗糙度。

通常,hz从一种箔类型到另一种箔类型不同,典型值为:

如果粗糙度hz小于趋肤深度(在非常高的频率下就是这种情况),这将导致额外的导体损耗。我们通过制作具有不同hz的不同箔的测试电路板来实验观察到这种增加。

我们发现VLF箔的损耗低于通常的HTE箔的情况。

对于频率大于1 GHz的射频/微波电路板,由于粗糙度造成的这些导体损耗在长信号线上会变得很明显。

低频,它仍然是:

对R使用上面的等式中的较高者。

在高频率下:

如果f为GHz,W和T为mils,我们得到:

让我们计算它为5密耳,1盎司,50欧姆和4密耳,0.5盎司和50欧姆线:

需要注意的重要一点是,在频率大于50 MHz时,导体损耗与频率的平方根成正比:

预测铜粗糙引起的额外损失并不容易 - 不存在简单的公式。

介电损耗

如前所述,这是传输线中每单位长度dB的介质损耗:

其中:

G =介电材料的电导率

Z0 =传输线的阻抗约为√L/C

PCB介电材料的两个特性:
1。介电常数 - Dk或Er - 也称为相对介电常数。
2。耗散因子 - Df - 也称为tanδ。

PCB材料制造商发布了Er和Df的值。

现在我们将找到G和Er,Df之间的关系。

电介质的损耗角正切/耗散因子

我们可以将两个导体之间的介电层建模为电导G并联电容C:

该导体上的A/C电压和频率电流为:

IG是通过G的电流,IC是通过电容器的电流。

tanδ也称为耗散因子Df≡tanδ。

如果σ是介电材料的有效导电率,那么:

已经通过实验观察到tanδ或Df随频率变化很小,并且可以被认为是与所有实际目的无关的频率值:

上述等式表明电导率σ,因此电介质的电导G随频率增加。这是你可以期望的频率越高,电介质偶极子的机械运动中的热耗散越大,它们与电介质上的交变电场对准。 (我们称之为'阻尼振动偶极矩'。)

我们现在有:

回想一下√LC给出传输线的每单位长度传播延迟 - Pd - 。

现在我们有:

因此,我们得到:

我们从上面看到电介质损耗与频率成正比。

为了了解它的大小,让我们考虑一下PCB材料Isola 370HR和I-Speed以及I-Meta:

总插入损耗

导体损耗的总和 - 'alfa'C - 和介电损耗: 'alfa'd。

我们衡量损失的价值。 (分别测量导体和介电损耗并不容易。)

如果我们测量不同频率(例如从1 GHz到10 GHz)的正弦信号的插入损耗,我们可以使用上面的公式来将两种类型的损失分开:

如果我们现在绘制'alfa'ins/√fvs√f,我们期望一个线性图,从中我们可以确定A1和A2。

继续阅读PCB传输线:

- 什么是PCB传输线?

- 信号速度和传播延迟PCB传输线

- PCB传输线:临界长度,受控阻抗和上升/下降时间

- 如何分析PCB传输线

- 阻抗PCB传输线中的不连续性和信号反射

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • pcb
    pcb
    +关注

    关注

    4391

    文章

    23737

    浏览量

    420590
  • 华强pcb线路板打样

    关注

    5

    文章

    14629

    浏览量

    44370
  • 华秋DFM
    +关注

    关注

    20

    文章

    3512

    浏览量

    6140
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    信号在传输线路上的传播机制

    在第二期的特性阻抗讲解中,我们提到了传输线路。虽然将传输线比作水路,但它究竟是通过什么原理传输信号和电力的呢?
    的头像 发表于 10-09 13:49 1732次阅读
    信号在<b class='flag-5'>传输线</b>路上的传播机制

    PCB“蚀刻因子”是啥,听说它很影响走线加工的阻抗?

    蚀刻因子是啥玩意咱们先不说,要不先简单问大家一个问题:传输线PCB设计时侧面看是矩形的,你们猜猜PCB板厂加工完之后会变成什么形状呢?
    的头像 发表于 09-19 11:52 390次阅读
    <b class='flag-5'>PCB</b>“蚀刻因子”是啥,听说它很影响走<b class='flag-5'>线</b>加工的阻抗?

    如何用TDR阻抗测量仪快速定位PCB传输线故障?

    TDR阻抗测量仪是一款基于时域反射原理(TDR)设计的高带宽特性阻抗测试分析专用仪器,它非常适用于快速定位PCB传输线故障。以下是使用TDR阻抗测量仪进行故障定位的步骤和一些关键点: 设备准备
    的头像 发表于 08-20 10:52 638次阅读
    如何用TDR阻抗测量仪快速定位<b class='flag-5'>PCB</b><b class='flag-5'>传输线</b>故障?

    高频电线之制程参数关系科普

    传输线基础知识(带着以下两个问题开始我们的学习交流之旅)什么的一条线才可以视为传输线?什么情况
    的头像 发表于 06-26 07:34 544次阅读
    高频电线之制程参数关系科普

    知识分享-传输线的返回电流(信号完整性揭秘)

    不清楚传输线的末端是什么情况,那么是否会有电流回流呢?在图3-4中,给一段传输线加载一个脉冲信号,传输线非常长,而且末端开路,我们测量加载信号之后,一小段时间内信号路
    的头像 发表于 05-27 17:36 708次阅读
    知识分享-<b class='flag-5'>传输线</b>的返回电流(信号完整性揭秘)

    传输线高频参数之Crosstalk

    是由于电信号在通过传输线时,产生的电场线穿过了相邻的传输线,而导致相邻的传输线上也产生了电信号,如上图所示,用网分测试的时候,差分S参数Sdd31表示近端串扰,Sd
    的头像 发表于 05-22 07:33 902次阅读
    <b class='flag-5'>传输线</b>高频参数之Crosstalk

    PCB问这个问题好怕你们笑我:为啥我的损耗曲线是“弯”的啊?

    了点SI的知识。SI虽然不能说非常非常的高深莫测,但是对于初学者来说,遇到三五个一直解释不了的问题也实属正常! 这个问题其实是小丽在仿真某项目的传输线损耗时遇到的。在特定的板材,叠层和线宽线
    发表于 04-21 16:48

    PCB的介质损耗角是什么“∠”?

    作为声波的传播介质;在电学中,导体和绝缘体都可以作为电流的传输介质;在光学中,空气、玻璃等物质可以作为光的传播介质。介质的性质会影响到波的传播速度、衰减程度等。在电场作用下,能产生极化的一切物质又被称之为
    发表于 04-21 10:49

    S参数与插入损耗和回波损耗

    1S参数的定义2回波损耗S111端口的反射波比入射波可以用阻抗表示为Zin为被测系统的输入阻抗(从输入端口看),Zo为传输线阻抗举例:1>传输线50Ω,终端匹配时,输出S11幅度为0左右,信号
    的头像 发表于 04-19 19:35 2137次阅读
    S参数与插入<b class='flag-5'>损耗</b>和回波<b class='flag-5'>损耗</b>

    PCB制板厂加工问题很大啊,高速PCB传输线阻抗一直往上跑

    都窜不高,走线越长,窜得越高!Chris给大家做个简单的仿真看看哈,假设我们设置一个内层的传输线叠层,使得差分线在线宽5mil,间距9mil的情况下满足100欧姆的阻抗要求。 首先我们设置这对差分线
    发表于 04-07 17:27

    PCB Layout中的三种走线策略

    情况。 不同角度走线的拐角线宽变化直角走线的对信号的影响就是主要体现在三个方面:一是拐角可以等效为传输线上的容性负载,减缓上升时间;二是阻抗不连续会造成信号的反射;三是直角尖端
    发表于 03-13 11:35

    PCB仿真相同损耗下,28G NRZ的产品不能直接升级到56G PAM4?

    下去传输不同损耗量级的理想传输线的仿真链路。所谓理想收发模型就是内阻理想,封装理想,无加重均衡参数的模型,而理想传输线就是阻抗完全匹配的模型。 我们想验证不同的
    发表于 03-11 11:32

    传输线特征阻抗是设计中最重要的因素

    从电池的角度来看,一旦设计工程师将电池的引线连入传输线的前端,就总有一个常量值的电流从电池中流出,并且保持电压信号的稳定不变。也许有人会问,是什么的电子元器件具有这样的行为?加入恒定不变的电压信号
    发表于 01-21 07:11

    PCB设计中的Stub天线对信号传输的影响

    PCB设计中,Stub(也称为短桩线或残桩线)对信号传输有以下几个主要影响:1.容性效应导致的阻抗偏低:Stub会导致容性效应,使得阻抗偏低,影响信道的阻抗一致性。Stub越长,阻抗
    的头像 发表于 12-24 17:21 1889次阅读
    <b class='flag-5'>PCB</b>设计中的Stub天线对信号<b class='flag-5'>传输</b>的影响

    DAC3482的I通道输出电路,传输线变压器有什么作用?

    下图是DAC3482的I通道输出电路,这里T11是1:1的传输线变压器,T4是4:1的变压器。如果IOUTA2是20mA,IOUTA1是0mA,求分析下此时IOUTA2输出是多少,为什么?这里的传输线变压器有什么作用?前面两个100欧电阻中间接地有啥作用?
    发表于 12-20 07:50