0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Nature:AI与神经科学再现模拟大脑

DPVg_AI_era 来源:lq 2019-09-13 16:54 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

AI和神经科学越来越紧密的结合,为处理海量数据、再现感官等任务提供了更加便利的条件,二者的融合促进了彼此的发展,为更精确地模拟人类大脑创造越来越有利的环境。本文选自Nature特刊《大脑》。

Chethan Pandarinath是佐治亚理工学院的生物医学工程师,他想帮助瘫痪病人操作机械臂,让他们也能像正常人那样抓取目标。要解决这个问题,首先要识别神经系统中发出的和“移动手臂”相关的电信号,尤其是大脑中的电信号,再将这个信号传给接收装置。 结果发现,最难办的问题就是识别信号。大脑发出的信号太复杂了。为了寻求帮助,他将信号作为输入传给了AI神经网络,让后者负责如何再现这些数据。

这些信号记录取自大脑神经的一小部分,大脑中1亿神经元中,只有200个是负责控制人的手臂运动的,计算机需要找到基础的数据结构,即研究人员所说的“隐藏因素”,它控制着纪录活动的总体行为,可以提现大脑的时间动态,也就是神经活动随时间的变化方式。“现在我们已经能够在毫秒级精度上掌握细微动作的角度和方向了,而控制机械臂需要的正是这些信息。”Pandarinath说道。

这个例子只是近年来AI和认知科学实现交互和融合的众多应用之一。AI技术的核心神经网络正是在模拟人的大脑计算和处理信息的模式。随着近十年来AI技术的迅猛发展,认识科学开始从AI技术中获得越来越多的帮助。

“这两个学科之间的融合是自然而然的事,因为基本上研究的都是一样的东西,比如研究如何将学习问题数学化,让机器能够计算解决,同时也在寻找着这个问题确实能够解决的证据,这就是大脑的任务。”伦敦大学学院盖茨比计算神经科学团队的理论神经学专家Maneesh Sahani说。

模拟大脑

人工神经网络只是大脑工作方式的一个粗略类比,David Sussillo是Google大脑团队的计算神经科学家,他与Pandarinath合作研究二者之间联系的潜在因素。比如将突触模型化为矩阵中的数字,而实际上它们是生物机械的复杂部分,利用化学和电活动来发送或终止信号,并以动态模式与相邻的突触进行交互。“你无法进一步了解突触实际上到底是怎么回事,只能化为矩阵中的一个个数字,”Sussillo说。

尽管如此,人工神经网络已被证明对研究大脑很有用。如果这样的系统可以产生类似于从大脑记录的模式的神经活动模式,科学家就可以验证系统如何产生输出,然后推断大脑是如何完成同样的事情的。该方法可以应用于神经科学家感兴趣的任何认知任务,包括处理图像。“如果你可以训练一个神经网络去做,”Sussillo说,“那么也许你可以理解这个网络是如何运作的,然后用它来理解生物数据。”

处理数据

AI技术不仅能够方便地建模,生成信息,也能方便地处理数据。比如功能性核磁共振,会以每秒1-2毫米的分辨率捕捉大脑活动的图像,神经科学上的难点在于,如何在数据量巨大的图像信息中找到想要的信号。

使用机器分析这些数据可以加速研究。“这是神经科学如何完成的巨大变化,”Sussillo说。“研究生不需要做那么多盲目的工作 - 他们可以专注于更大的问题,同时可以通过自动化技术获得更准确的结果。“

斯坦福大学的计算神经学家Daniel Yamins正在开发一套能够模拟大脑活动的神经网络

再现感官

斯坦福大学计算神经科学家Daniel Yamins采用的方法是建立一个可以复制大脑数据的人工系统。2014年,当Yamins在麻省理工学院做博士后研究员时,他和同事训练了一个深度神经网络来预测猴子在识别某些物体时的大脑活动。这个网络架构具有两个主要特征。

首先,它是一个视网膜,也就是说大脑中的视觉处理途径反映了眼睛获取视觉信息的方式。其次,这个系统是分层的。皮层中的特定区域负责执行越来越复杂的任务,从仅识别物体轮廓的层,到识别整个物体的更高层。

研究人员对于网络高层运行机制的细节知之甚少,但最后结果是,大脑可以在不同的位置和不同的光照条件下成功识别物体,无论是目标因为距离的原因看上去或大或小,即使目标的一部分隐藏不见,也依然能识别。而计算机经常因这些障碍而陷入困境。

Yamins和他的同事根据与大脑相同的视网膜,分层构建了他们的深层神经网络,并展示了数千个64个物体的图像,这些物体的特征如大小和位置不同。当网络学会识别物体时,会产生几种可能的神经活动模式。研究人员将这些计算机生成的模式与猴子神经元记录的模式进行比较,同时执行类似的任务。事实证明,最能识别物体的网络,正是那些与猴子大脑最接近的活动模式。“你发现神经元的结构模仿了网络的结构,”Yamins说。研究人员能够将其网络区域与大脑的相应区域进行匹配,准确率约为70%。

在2018年,Yamins和他的同事使用听觉皮层实现了类似的壮举,他们打造了一个深度神经网络,能够识别2秒视频剪辑中的音乐单词和类型,其精度与人类相当。这一成果有助于研究人员确定大脑皮层的哪些区域负责语音和音乐的识别,而这是了解人类听觉系统的一小步。

一些常见问题:学习行为与智能的起源

计算机科学和认知科学正在解决一些重大问题,而研究如何在这两个领域中回答这些问题,可能会促进共同进步。其中一个问题就是:学习行为是如何发生的。神经网络主要执行监督学习。例如,为了掌握图像识别,它们可能会学习来自ImageNet数据集中的图像。网络对具有相同标签的图像(例如“猫”)的统一理解有共同之处。当学习新图像时,网络会检查它是否有类似的数字属性;如果找到匹配,就会将图像声明为“猫”的图像。

婴儿的学习方式显然不是这样,Tomaso Poggio说,他是MIT的计算神经科学家。“婴儿两岁之前就能看到大约相当于十亿张图像,”他说。但这些图像很少是被标记过的,只有一小部分对象会被主动指出并起名。“在机器学习中,我们还不知道如何应对这种情况,”Poggio说。“我们不知道如何让机器从大多数未标记的数据中学习。”

他的实验室项目还处于初始阶段,神经网络通过推断未标记视频中的模式执行无监督学习。“我们知道生物学上可以做到这一点,”Poggio说。“问题是怎么实现的。” Yamins正在通过设计像游戏中的婴儿一样的程序来处理无人监督的学习,通过随机交互来审视环境,并慢慢了解世界是如何运作的。实际上是在以好奇心编码来激励计算机进行探索,希望能够出现新的行为。

另一个突出的问题是,智能的某些方面是否是由进化实现的。例如,人们似乎很容易识别面部,一个婴儿可以从生命的最初几个小时就实现了这一点。Poggio认为,这可能是我们的基因编码一种机制,用于在开发过程中快速及早地学习这类任务。分析这个想法是否正确,可能会计算机科学家们找到一种方法来推进机器学习的发展。 还有的研究人员正在研究道德的神经学基础。“人们都害怕'邪恶'的机器,如果我们想要建立‘善良’的机器,‘有道德’的机器,我们可能就能更充分地了解我们的道德行为是如何产生的。”

Yamins说,现在只凭神经科学很难揭示无监督学习的运行机制。“如果没有AI解决方案,如果没有任何人工构建的方式,就不可能建立起大脑的运作模型,” 他认为,计算机科学家更有可能提出一种或多种可供神经科学家测试的解决方案。“最终可能会发现他们错了,”他说,“但这难道不就是你研究的原因吗?” 解答这些谜语可以打造出更智能的机器,这些机器能够从环境中学习,并且可以将计算机的速度和处理能力与人类的更多能力结合起来。计算机的数据处理和建模能力已经带来了脑科学的进步。“人工智能将对神经科学产生巨大影响,”Sussillo说,“而我希望成为其中的一部分。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4829

    浏览量

    106835
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136248
  • ai技术
    +关注

    关注

    1

    文章

    1313

    浏览量

    25606

原文标题:Nature:AI与神经科学再现模拟大脑

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    会议回顾 | 深视智能携新品sCMOS科学相机亮相中国神经科学学会第十八届全国学术会议

    ·祝贺第十八届全国学术会议圆满举行中国神经科学学会第十八届全国学术会议(CNS2025)于9月28日在西安国际会展中心顺利闭幕。本次大会汇聚了全球顶尖的科学家与研究学者,我们深感荣幸能参与
    的头像 发表于 10-13 08:18 300次阅读
    会议回顾 | 深视智能携新品sCMOS<b class='flag-5'>科学</b>相机亮相中国<b class='flag-5'>神经科学</b>学会第十八届全国学术会议

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    神经元,但却能产生复杂的行为。受此启发,与传统的神经网络相比,LNN旨在通过模拟大脑神经元之间的动态连接来处理信息,这种网络能够顺序处理数
    的头像 发表于 09-28 10:03 719次阅读
    液态<b class='flag-5'>神经</b>网络(LNN):时间连续性与动态适应性的<b class='flag-5'>神经</b>网络

    【「AI芯片:科技探索与AGI愿景」阅读体验】+具身智能芯片

    控制器等。 具身智能常见的感知模块往往被称为智能传感器,就是在原有的传感器上加入一定的AI功能,从而可以模拟人类的5种基本感觉:视觉、听觉、触觉、嗅觉和味觉。 1、输入端的数据压缩 输入端常用的数据压缩
    发表于 09-18 11:45

    【「AI芯片:科技探索与AGI愿景」阅读体验】+神经形态计算、类脑芯片

    AI芯片不仅包括深度学细AI加速器,还有另外一个主要列别:类脑芯片。类脑芯片是模拟人脑神经网络架构的芯片。它结合微电子技术和新型神经形态器件,模仿人脑
    发表于 09-17 16:43

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI科学应用

    和关联性 AI驱动科学:研究和模拟人类思维和认识过程。 本章节作者为我们讲解了第五范式,介绍了科学发现的一般方法和流程等。一、科学发现的5个
    发表于 09-17 11:45

    【「AI芯片:科技探索与AGI愿景」阅读体验】+化学或生物方法实现AI

    21世纪是生命科学的世纪,生物技术的潜力将比电子技术更深远----- 里卡多-戈蒂尔 半导体实现AI应该没什么疑问了吧?化学、生物怎么实现AI呢? 生物大脑是一个由无数
    发表于 09-15 17:29

    【「AI芯片:科技探索与AGI愿景」阅读体验】+可期之变:从AI硬件到AI湿件

    的不同。随着AI热潮的兴起,大脑的抽象模型已被提炼成各种的AI算法,并使用半导体芯片技术加以实现。 而大脑是一个由无数神经元通过突触连接而成
    发表于 09-06 19:12

    【「AI芯片:科技探索与AGI愿景」阅读体验】+内容总览

    、集成芯片、分子器件与分子忆阻器,以及打印类脑芯片等。 第五章至第八章分别探讨用化学或生物方法实现AIAI科学发现中创新应用、实现神经形态计算与类脑芯片的创新方法,以及具身智能芯片
    发表于 09-05 15:10

    Arm神经技术是业界首创在 Arm GPU 上增添专用神经加速器的技术,移动设备上实现PC级别的AI图形性能

    应用,该 AI 图形优化升级技术能够以每帧四毫秒的速度实现两倍的分辨率提升 开发者即刻就能通过业界首个神经图形的开放开发套件进行构建,其中包含虚幻引擎插件、模拟器,以及 GitHub 和 Hugging Face 上的开放模型
    的头像 发表于 08-14 17:59 2531次阅读

    NVIDIA AI助力科学研究领域持续突破

    随着 AI 技术的广泛应用,AI 正在成为科学研究的引擎。NVIDIA 作为重要的技术推手,持续驱动着 AI 系统解锁更多领域的科学突破。
    的头像 发表于 08-05 16:30 968次阅读

    “结印”操作成真?Meta神经运动接口手环登上Nature

    电子发烧友网综合报道  最近,Meta旗下著名硬件部门Reality Labs开发了一种新型的通用非侵入性神经运动接口,用一个手环收集生物信号,只需要手腕一动,就能完成丰富的人机交互操作。该成果发表
    发表于 07-29 07:30 2014次阅读
    “结印”操作成真?Meta<b class='flag-5'>神经</b>运动接口手环登上<b class='flag-5'>Nature</b>

    【书籍评测活动NO.64】AI芯片,从过去走向未来:《AI芯片:科技探索与AGI愿景》

    细胞内的生化反应模拟神经网络,真菌计算借助菌丝网络的分布式连接实现信息处理。这些技术跳出传统框架,直接通过生物体模仿大脑功能,有望实现质的飞跃。 应用创新 书中将科学发现划分为5种范式
    发表于 07-28 13:54

    飞腾软件支持平台即将正式上线AI智能大脑

    遇到棘手的技术问题却无人解答?搜索文档耗时长?飞腾软件支持平台即将正式上线AI智能大脑,让技术难题实现“秒回应”!
    的头像 发表于 06-13 11:37 854次阅读

    Meta AI推出Brain2Qwerty:非侵入性大脑信号转文本系统

    据外媒最新报道,Meta AI成功研发出一款名为Brain2Qwerty的人工智能系统,该系统能够无需手术即可将大脑信号直接转换为文本。这一创新成果为神经科学与人工智能的融合开辟了新的道路
    的头像 发表于 02-11 13:37 881次阅读

    人工神经网络的原理和多种神经网络架构方法

    所拟合的数学模型的形式受到大脑神经元的连接和行为的启发,最初是为了研究大脑功能而设计的。然而,数据科学中常用的神经网络作为
    的头像 发表于 01-09 10:24 2275次阅读
    人工<b class='flag-5'>神经</b>网络的原理和多种<b class='flag-5'>神经</b>网络架构方法