0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于使用深度学习破译老鼠的语言分析和介绍

MATLAB 来源:djl 2019-09-11 11:40 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

多年来,研究人员知道我们可以通过啮齿类动物的叫声来了解它们的感受。就像狗摇尾巴一样,某些叫声表明啮齿动物很快乐。反过来,另一些叫声表明啮齿动物有压力,甚至抑郁。

但为什么研究人员会对啮齿动物的情绪感兴趣呢?因为研究人员想了解啮齿动物对各种刺激的反应。这有助于研究人员找到帮助成瘾者或抑郁者的最佳方法。通过简单分析啮齿类动物的交流方式,研究人员可以判断治疗是否有助于减轻抑郁情绪。

图片来源:Alice Gray

由于啮齿类动物主要通过人耳听不到的超声波发声(USV)进行交流,因此很难破译老鼠吱吱的叫声。超声波发声的范围为20千赫到115千赫,而人类通常可以听到20赫到20千赫的声音。

直到现在,研究人员在研究啮齿动物的叫声时,依然严重依赖耗时的人工分析。由于发声频率很高,研究人员不得不放慢播放录音的速度,才能听到叫声。即使使用专门的麦克风,对录音中的高音尖叫声进行标记和分类也是很费力费时的。这些方法也容易导致人为错误和误解。

华盛顿大学精神病学和行为科学系教授John Neumaier博士告诉《数字趋势》杂志:“过去,为了更好地了解动物在行为测试中的情绪状态,研究人员将这些声音记录了下来。问题是,要对这些录音进行人工分析,就需要把它们放慢到人类可以听到的频率,这可能需要花费10倍的时间来听。这给研究人员带来了非常大的工作压力,使得他们不愿意用这种自然的方式来解读动物的情绪状态。”

因此,这个研究小组借助于人工智能AI)来实现这一过程的自动化。他们的程序叫做DeepSqueak,因为这项程序基于一种叫做深度学习的人工智能形式。

利用深度学习分析超声波发声

两位研究人员(华盛顿大学精神病学和行为科学系技术人员Russell Marx和华盛顿大学博士后研究员Kevin Coffey博士)与Neumaier教授合作开发了用于检测和分析超声波发声的DeepSqueak软件。他们的研究最近发表在《神经心理药理学自然杂志》上。

Coffey说:“我们可以训练这个软件,以一种更类似于人类学习的方式来分析这些叫声。我们用图片和例子来说明叫声,而不是用数学来描述叫声是什么。”

DeepSqueak将声音问题转化为图像问题。

DeepSqueak的输入是一个音频文件(.wav或.flac)。DeepSqueak将音频文件拆分为短的分段,然后将这些分段转换为图像(声波图)。下图显示了从原始音频文件到经过滤波的声波图的转换。

关于使用深度学习破译老鼠的语言分析和介绍

图片来源:Kevin R.Coffey、Russell G.Marx和John F.Neumair

将声波图输入到一个深度学习人工智能程序中,这个程序可以对图像进行识别和分类,类似于自动驾驶汽车中用来识别停车标志和车道线的人工智能。它首先查看声波图中是否有吱吱声。如果有的话,是什么类型的吱吱声。

Marx说:“DeepSqueak使用仿生算法,这种仿生算法可以通过已经标记好的发声和噪音的例子来学习分离发声。”

关于使用深度学习破译老鼠的语言分析和介绍

图片来源:Kevin R. Coffey、 Russell G. Marx和John F. Neumaier

该小组开始使用Deepsqueak时,采用的是MathWorks网站的示例代码Object Detection Using Faster R-CNN Deep Learning(使用Faster R-CNN深度学习进行对象检测):

在此基础上,他们开发了DeepSqueak软件包和MATLAB图形用户界面。DeepSqueak使用了Computer Vision System Toolbox(计算机视觉系统工具箱)、Curve Fitting Toolbox(曲线拟合工具箱)、Image Processing Toolbox(图像处理工具箱)、Parallel Computing Toolbox(并行计算工具箱)和Deep Learning Toolbox(深度学习工具箱)。

该技术有助于开发更好的成瘾治疗方法

这个研究小组的重点是精神病学和行为科学。

这项无损伤性研究发现,啮齿类动物在预期得到奖励(如,糖)或与同伴玩耍时最快乐。他们还发现,当雌性啮齿动物在附近时,雄性啮齿动物的行为也不同。情况正如预期,并无意外。

Neumaier教授说,他的目标是开发压力失调和成瘾的治疗方法。DeepSqueak使超声波发音的解码破译工作变得方便快捷,可以帮助实验室更快地实现目标。

他说:“如果科学家能更好地理解药物如何改变大脑活动,从而引起愉悦或不愉悦的感觉,我们就可以设计出更好的治疗成瘾的方法。”

该小组已经向所有研究人员开放了DeepSqueak,他们可以创建自己的分析。代码在Github上:

https://github.com/DrCoffey/DeepSqueak

该程序目前可以识别大约20种不同的超声波发声。该小组希望,当其他人识别和标记各种超声波发声时,他们能够为老鼠的叫声创建一个虚拟的“谷歌翻译”。

相关阅读:

直播预告 | MATLAB EXPO 2019,大师在线开讲 >>

深度学习网络到底在“看”哪里?

昆虫大脑完胜机器学习

使用 MATLAB 图像处理算法,视频实时加持蓝天背景

MATLAB 的艺术鉴赏的能力

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 超声波
    +关注

    关注

    63

    文章

    3241

    浏览量

    144087
  • 网络
    +关注

    关注

    14

    文章

    8130

    浏览量

    93084
  • 深度学习
    +关注

    关注

    73

    文章

    5590

    浏览量

    123901
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    如何深度学习机器视觉的应用场景

    检测应用 微细缺陷识别:检测肉眼难以发现的微小缺陷和异常 纹理分析:对材料表面纹理进行智能分析和缺陷识别 3D表面重建:通过深度学习进行高精度3D建模和检测 电子行业应用 PCB板复杂
    的头像 发表于 11-27 10:19 49次阅读

    一文了解Mojo编程语言

    Mojo 语言的具体介绍: 核心特点 Python 兼容性 Mojo 支持大部分 Python 语法和标准库,可直接调用 Python 生态系统中的库,降低了学习成本。 极致性能优化 通过静态编译
    发表于 11-07 05:59

    【新启航】深度学习在玻璃晶圆 TTV 厚度数据智能分析中的应用

    。随着深度学习在数据处理领域展现出强大能力,将其应用于玻璃晶圆 TTV 厚度数据智能分析,有助于实现高精度、高效率的质量检测与工艺优化,为行业发展提供新动能。
    的头像 发表于 10-11 13:32 242次阅读
    【新启航】<b class='flag-5'>深度</b><b class='flag-5'>学习</b>在玻璃晶圆 TTV 厚度数据智能<b class='flag-5'>分析</b>中的应用

    深度学习对工业物联网有哪些帮助

    、实施路径三个维度展开分析: 一、深度学习如何突破工业物联网的技术瓶颈? 1. 非结构化数据处理:解锁“沉睡数据”价值 传统困境 :工业物联网中70%以上的数据为非结构化数据(如设备振动波形、红外图像、日志文本),传统方法难以
    的头像 发表于 08-20 14:56 757次阅读

    自动驾驶中Transformer大模型会取代深度学习吗?

    [首发于智驾最前沿微信公众号]近年来,随着ChatGPT、Claude、文心一言等大语言模型在生成文本、对话交互等领域的惊艳表现,“Transformer架构是否正在取代传统深度学习”这一话题一直被
    的头像 发表于 08-13 09:15 3917次阅读
    自动驾驶中Transformer大模型会取代<b class='flag-5'>深度</b><b class='flag-5'>学习</b>吗?

    深度学习遇上嵌入式资源困境,特征空间如何破局?

    近年来,随着人工智能(AI)技术的迅猛发展,深度学习(Deep Learning)成为最热门的研究领域之一。在语音识别、图像识别、自然语言处理等领域,深度
    发表于 07-14 14:50 1119次阅读
    当<b class='flag-5'>深度</b><b class='flag-5'>学习</b>遇上嵌入式资源困境,特征空间如何破局?

    深度操作系统deepin 25全面支持凹语言

    近日,deepin(深度)社区宣布,deepin 25 现已完成对国产通用编程语言语言 (Wa-Lang) 的兼容性测试。在 deepin 25 默认安装环境下,即可直接使用凹语言
    的头像 发表于 07-10 15:26 790次阅读
    <b class='flag-5'>深度</b>操作系统deepin 25全面支持凹<b class='flag-5'>语言</b>

    存储示波器的存储深度对信号分析有什么影响?

    存储深度(Memory Depth)是数字示波器的核心参数之一,它直接决定了示波器在单次采集过程中能够记录的采样点数量。存储深度对信号分析的影响贯穿时域细节捕捉、频域分析精度、触发稳定
    发表于 05-27 14:39

    用树莓派搞深度学习?TensorFlow启动!

    介绍本页面将指导您在搭载64位Bullseye操作系统的RaspberryPi4上安装TensorFlow。TensorFlow是一个专为深度学习开发的大型软件库,它消耗大量资源。您可以在
    的头像 发表于 03-25 09:33 963次阅读
    用树莓派搞<b class='flag-5'>深度</b><b class='flag-5'>学习</b>?TensorFlow启动!

    如何排除深度学习工作台上量化OpenVINO™的特定层?

    无法确定如何排除要在深度学习工作台上量化OpenVINO™特定层
    发表于 03-06 07:31

    军事应用中深度学习的挑战与机遇

    ,并广泛介绍深度学习在两个主要军事应用领域的应用:情报行动和自主平台。最后,讨论了相关的威胁、机遇、技术和实际困难。主要发现是,人工智能技术并非无所不能,需要谨慎应用,同时考虑到其局限性、网络安全威胁以及
    的头像 发表于 02-14 11:15 818次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural Network
    的头像 发表于 02-12 15:15 1340次阅读

    望获实时Linux系统与大语言模型深度融合,开创实时智能无限可能!

    语言模型的崛起为智能化应用开辟了新的可能性。借助深度学习技术,这些模型能够理解和生成自然语言,处理复杂的文本和语义信息。这使得它们在诸如人机问答、内容生成和数据
    的头像 发表于 01-08 13:44 1031次阅读

    Triton编译器支持的编程语言

    编写和优化深度学习代码。Python是一种广泛使用的高级编程语言,具有简洁易读、易于上手、库丰富等特点,非常适合用于深度学习应用的开发。 二
    的头像 发表于 12-24 17:33 1454次阅读

    深度学习工作负载中GPU与LPU的主要差异

    ,一个新的竞争力量——LPU(Language Processing Unit,语言处理单元)已悄然登场,LPU专注于解决自然语言处理(NLP)任务中的顺序性问题,是构建AI应用不可或缺的一环。 本文旨在探讨深度
    的头像 发表于 12-09 11:01 3910次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>工作负载中GPU与LPU的主要差异