电子发烧友网>新科技>新材料> > 正文

如何开发新型纳米材料

PCB88475579来源:网络整理 2018年01月15日 13:45 次阅读

材料是人类社会生活的物质基础,材料的发展导致着时代的变迁,可以这么说,材料的先进就代表着时代进步和物质文明的进步。而新型功能材料正是在引领着材料发展的潮流。一个国家对于各种新型功能材料的个、结构、性能、制备和应用,反映着该国在材料领域的水平。同时也成为衡量一个国家经济和社会发展、国防实力等的重要标志。正是由于新型功能材料对于国家、社会都有着举足轻重的地位和重要性,对起的开发的研究也显得尤为的重要。

研究意义

功能材料不仅是发展我国信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,而且是改造与提升我国基础工业和传统产业的基础,直接关系到我国资源、环境及社会的可持续发展。 我国国防现代化建设一直受到以美国为首的西方国家的封锁和禁运,所以我国国防用关键特种功能材料是不可能依靠进口来解决的,必须要走独立自主、自力更生的道路。如军事通信、航空、航天、导弹、热核聚变、激光武器、激光雷达、新型战斗机、主战坦克以及军用高能量密度组件等,都离不开特种功能材料的支撑。

我国国防现代化建设一直受到以美国为首的西方国家的封锁和禁运,所以我国国防用关键特种功能材料是不可能依靠进口来解决的,必须要走独立自主、自力更生的道路。如军事通信、航空、航天、导弹、热核聚变、激光武器、激光雷达、新型战斗机、主战坦克以及军用高能量密度组件等,都离不开特种功能材料的支撑。

我国经济的快速增长和社会可持续发展,对发展新型能源及能源材料具有迫切的需求。能源材料是发展能源技术、提高能源生产和利用效率的关键因素,我国目前是世界上能源消费增长最快的国家,同时也是能源紧缺的国家。发展电动汽车、使用清洁能源、节约石油资源等政策措施使得新型能源转换及储能材料的需求不断增加。我国西部还拥有一些储量丰富的资源,如稀土、钨、钛、钼、钽、铌、钒、锂等,有的工业储量甚至占世界总储量的一半以上,这些资源均是特种功能材料的重要原材料。研究开发与上述元素相关的特种功能材料,拓宽其应用领域,取得自主知识产权,将大幅度地提高我国相关特种功能材料及制品的国际市场竞争力,这对实现西部资源的高附加值利用,将西部的资源优势转化为技术优势和经济优势具有重要意义,将有力地支持国家的西部大开发。

材料是现代科技和国民经济的物质基础。一个国家生产材料的品种、数量和质量是衡量其科技和经济发展水平的重要标志。随着新技术将更迅猛地发展,我们对功能材料的需求也日益迫切。因此,我们要加强对功能材料的研制和开发应用,把新成果应用于劳动生产。在未来的五到十年,我国经济、社会及国家安全对功能材料有着巨大的需求,功能材料是关系到我国能否顺利实现第三步战略目标的关键新材料。

为了使我国纳米科学技术健康快速发展,必须采取有力的措施,推动我国纳米科学技术的繁荣。当前急需要做的几件事情是:

1. 媒体要全面正确宣传纳米材料和技术的科学内涵,纠正乱用和炒作纳米概念的不正之风,提倡各领域专家协同创新,促进纳米技术向各个领域交叉渗透。

2. 建立纳米技术实用化和产业化基金,加大对纳米技术和产业发展的资金扶持力度。形成政府、企业、金融部门、社会等多面的投资渠道,支持纳米产业的发展。制定优惠税率、贷款贴息等相关政策,引导企业、金融部门、风险投资机构及社会闲散资金投入到纳米技术和产业的发展中。

3. 建立一批从事纳米技术研究和产业化开发的重点实验室和工程技术研究中心,并与纳米产业挂钩,增强纳米产业发展的动力。

4. 建立国家级纳米技术产业认定、评价中心和纳米技术产品标准制定中心。负责和指导纳米技术的行业标准和产品标准。

5. 制定纳米产业核心技术自主知识产权的保护措施,鼓励申请国际发明专利,并予以适当财政补贴。

6. 成立非常设纳米产业发展指导协调委员会和咨询专家组,对全国纳米材料和技术的发展进行宏观咨询、指导和协调。

7. 建议成立国家纳米技术学会和国家纳米产业协会,促进纳米技术的交流,推进纳米产业健康发展。

8. 从现在开始要特别重视纳米技术人才的培养,教育部门要把纳米科学和技术作为重要的学科加强建设,传统学科领域要注意与纳米科学技术相结合,充实纳米科学技术的内涵,使传统学科的知识与国际前沿接轨。

实际应用方面的价值

新型功能材料是指新近发展起来和正在发展中的具有优异性能和特殊功能,对科学技术尤其是对高技术的发展及新产业的形成具有决定意义的新材料。主要包括电子信息材料、功能陶瓷材料、能源材料、生物医用材料、生态环境材料、超导材料、智能材料、功能高分子材料、先进复合材料、梯度材料等。

功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。它是信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业的先导、基石与支撑。

在未来的5~10年,我国经济、社会及国家安全对功能材料有着巨大的需求。目前,功能材料已成为我国材料科学和工程中最具活力与创新性的热点;有关功能材料的项目已占整个新材料研究项目的70%以上。功能材料不仅是发展我国信息技术、生物技术、能源技术等高技术和加强国防建设的重要基础材料;而且对我国基础工业与传统产业的改造和升级,实现跨越式发展起着重要的促进作用;同时还直接关系到我国资源、环境及社会的可持续发展。目前光电信息材料、功能陶瓷材料、生物医用材料、超导材料、功能高分子材料、先进复合材料、智能材料以及生态环境材料等功能材料是世界各国战略高技术竞争的热点和重点,也是我国“十二五”国家科技计划材料领域的重点。

当前国际功能材料及其应用技术正面临新的突破,诸如微电子材料、光子材料、信息材料、能源转换及储能材料、生态环境材料及材料的分子、原子设计等正处于日新月异的发展之中,发展功能材料技术正在成为一些发达国家强化其经济及军事优势的重要手段。

国内外的研究现状

当前国际功能材料及其应用技术正面临新的突破,诸如微电子材料、光子材料、信息材料、能源转换及储能材料、生态环境材料及材料的分子、原子设计等正处于日新月异的发展之中,发展功能材料技术正在成为一些发达国家强化其经济及军事优势的重要手段。从国内外功能材料的研究动态看,功能材料的发展趋势可归纳为如下方面:

(1)开发高技术所需的新型功能材料,特别是尖端领域(如航空航天、分子电子学、高速信息、新能源、海洋技术和生命科学等)所需和在极端条件(如超高压、超高温、超低温、高烧蚀、高热冲击、强腐蚀、高真空、强激光、高辐射、粒子云、原子氧、核爆炸等)下工作的高性能功能材料。

(2)功能材料的功能从单功能化向多功能化和复合或综合功能发展,从低级功能(如单一的物理性能)向高级功能(如人工智能、生物功能和生命功能等)发展。

(3)功能材料和器件的一体化、高集成化、超微型化、高密积化和超分子化。

(4)功能材料和结构材料兼容,即功能材料结构化,结构材料功能化。

(5)进一步研究和发展功能材料的新概念、新设计和新工艺。

(6)完善和发展功能材料检测和评价方法。

(7)加强功能材料的应用研究,扩展功能材料的应用领域,特别是尖端领域和民用高技术领域,并把成熟的研究成果迅速推广,以形成生产力。

纳米材料的合成与制备方法

物理制备方法

1.机械

机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部供给热能,通过球磨让物质使材料之间发生界面反应,使大晶粒变为小晶粒,得到纳米材料。范景莲等采用球磨法制备了钨基合金的纳米粉末。利用金属羰基粉高能球磨法获得纳米级的Fe-18Cr-9W合金粉末。机械粉碎法是利用各种超微粉机械粉碎和电火花爆炸等方法将原料直接粉碎成超微粉,尤其适用于制备脆性材料的超微粉。超重力技术利用超重力旋转床高速旋转产生的相当于重力加速度上百倍的离心加速度,使相间传质和微观混合得到极大的加强,从而制备纳米材料。刘建伟等以氨气和硝酸锌为原料,应用超重力技术制备粒径20nm—80nm、粒度分布均匀的ZnO纳米颗粒。制备ZnO一维纳米材料通常采用汽固(VS)、汽液固(VLS)等蒸发传质法:在水平放置的铝管管式炉中加热原材料(ZnO粉体)使之气化,通入运载气体(Xr)流使ZnO随运载气体运载到低温区,由于温度的降低,ZnO在底衬(铝板)上沉积并生长得到一维ZnO纳米材料。但是取向生长ZnO纳米线在场电子发射器、新型太阳能电池、紫外激光器等领域应用广泛。由于这些应用与ZnO纳米线生长的空间方向、晶面取向以及ZnO纳米线在纳米线阵列中的密度紧密相关,因此制备方向、取向、密度可控的ZnO纳米线是当今一个热点研究课题。所以为了制备新型ZnO一维纳米材料采用金属纳米粉体或纳米簇为催化剂,配合传统汽一液一固(VLS)法在衬底上则可生长出ZnO纳米线,这是典型的合成位置、取向、密度可控ZnO的新方法。

2.气相法

气相法包括蒸发冷凝法、溶液蒸发法、深度塑性变形法等。蒸发冷凝法是在真空或惰性气体中通过电阻加热、高频感应、等离子体、激光、电子束、电弧感应等方法使原料气化或形成等离子体并使其达到过饱和状态,然后在气体介质中冷凝形成高纯度的纳米材料。Takaki等在惰性气体保护下,利用气相冷凝法制备了悬浮的纳米银粉。杜芳林等制备出了铜、铬、锰、铁、镍等纳米粉体,粒径在30nm—50 nm范围内可控。魏胜用蒸发冷凝法制备了纳米铝粉。溶液蒸发法是将溶剂制成小滴后进行快速蒸发,使组分偏析最小,一般可通过喷雾干燥法、喷雾热分解法或冷冻干燥法加以处理。深度塑性变形法是在准静态压力的作用下,材料极大程度地发生塑性变形,而使尺寸细化到纳米量级。有文献报道,Φ82mm的Ge在6GPa准静压力作用后,再经850℃热处理,纳米结构开始形成,材料由粒径100nm的等轴晶组成,而温度升至900℃时,晶粒尺寸迅速增大至400nm。 以上介绍了几种常用的纳米材料物理制备方法,这些制备方法基本不涉及复杂的化学反应,因此,在控制合成不同形貌结构的纳米材料时具有一定的局限性。

化学制备方法

1.溶胶—凝胶法

溶胶—凝胶法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶。Stephen等利用高分子加成物(由烷基金属和含N聚合物组成)在溶液中与H2S反应,生成的ZnS颗粒粒度分布窄,且被均匀包覆于聚合物基体中,粒径范围可控制在2nm-5nm之间。Marcus Jones等以CdO为原料,通过加入Zn(CH3)2和S[Si(CH3)3]2制得了ZnS包裹的CdSe量子点,颗粒平均粒径为3.3nm,量子产率(quantum yield,QY)为13.8%。

2.离子液法

离子液作为一种特殊的有机溶剂,具有独特的物理化学性质,如粘度较大、离子传导性较高、热稳定性高、低毒、流动性好以及具有较宽的液态温度范围等。即使在较高的温度下,离子液仍具有低挥发性,不易造成环境污染,是一类绿色溶剂。因此,离子液是合成不同形貌纳米结构的一种良好介质。Jiang等以BiCl3和硫代乙酰胺为原料,在室温下于离子液介质中合成出了大小均匀的、尺寸为3μm—5μm的Bi2S3纳米花。他们认为溶液的pH值、反应温度、反应时间等条件对纳米花的形貌和晶相结构有很重要的影响。他们证实,这些纳米花由直径60nm—80 nm的纳米线构成,随老化时间的增加,这些纳米线会从母花上坍塌,最终形成单根的纳米线。赵荣祥等采用硝酸铋和硫脲为先驱原料,以离子液为反应介质,合成了单晶Bi2S3纳米棒。

3.溶剂热法

溶剂热法是指在密闭反应器(如高压釜)中,通过对各种溶剂组成相应的反应体系加热,使反应体系形成一个高温高压的环境,从而进行实现纳米材料的可控合成与制备的一种有效方法。Lou等采用单源前驱体Bi[S2P(OC8H17)2]3作反应物,用溶剂热法制得了高度均匀的正交晶系Bi2S3纳米棒,且该方法适于大规模生产。Liu等用Bi(NO3)3•5H2O、NaOH及硫的化合物为原料,甘油和水为溶剂,采用溶剂热法在高压釜中160℃反应24-72 h制得了长达数毫米的Bi2S3纳米带。

4.微乳法

微乳液制备纳米粒子是近年发展起来的新兴的研究领域,具有制得的粒子粒径小、粒径接近于单分散体系等优点。1943年Hoar等人首次报道了将水、油、表面活性剂、助表面活性剂混合,可自发地形成一种热力学稳定体系,体系中的分散相由80nm- 800nm的球形或圆柱形颗粒组成,并将这种体系定名微乳液。自那以后,微乳理论的应用研究得到了迅速发展。1982年,Boutonnet等人应用微乳法,制备出Pt、Pd等金属纳米粒子。微乳法制备纳米材料,由于它独特的工艺性能和较为简单的实验装置,在实际应用中受到了国内外研究者的广泛关注。 纳米材料由于具有特异的光、电、磁、催化等性能,可广泛应用于国防军事和民用工业的各个领域。它不仅在高科技领域有不可替代的作用,也为传统的产业带来生机和活力。它在生物医疗领域同样具有极高用途,如细菌纤维素纳米材料的制备,目前已经商品化的产品主要有用作外科和齿科材料的细菌纤维素产品Biofill、Gengiflex和BASYC。对于二级和三级烧伤、溃疡等,Biofill已被成功用作人造皮肤的临时替代品,Geniflex已用于齿根膜组织的恢复;基于细菌纤维素的原位可塑性设计出的BASYC可望在显微外科中用作小尺寸人造血管随着纳米材料制备技术的不断开发及应用范围的拓展,工业化生产纳米材料必将对传统的化学工业和其它产业产生重大影响。但到目前为止,开发出来的产品较难实现工业化、商品化规模。主要问题是:对控制纳米粒子的形状、粒度及其分布、性能等的研究很不充分;纳米材料的收集、存放,尤其是纳米材料与纳米科技的生物安全性更是急待解决的问题。这些问题的研究和解决将不仅加速纳米材料和纳米科技的应用和开发,而且将极大地丰富和发展材料科学领域的基础理论。

基于以上发展趋势,下面介绍几种重要的新型功能材料:

智能材料

智能材料是具有感知温度、力、电、磁等外界环境并产生驱动(位移等)效应的一类重要功能材料,主要包括形状记忆、压电和磁料,还有质子交换膜型燃料电池用的有机质子交换膜等,都是目前产业关注的热点。另外,薄膜太阳能电池由于大大地减少了半导体材料的消耗,也容易批量生产,从而大幅度地降低了太阳能电池的成本,但是效率相对较低,目前商用薄膜电池的光电转换效率只有6~8%。随着纳米技术的发展和成熟,纳米结构材料成为新颖的太阳能电池材料,在太阳能电池中使用纳米结构材料将能够提高太阳能电池的光电转换效率,降低电池的生产成本,对于实现太阳能电池的大规模应用将起着重要的作用,例如燃料敏化纳米晶膜太阳能电池的光电转换效率已达到11.04%,而其成本只有传统硅光电池的十分之一,已成为目前应用前景看好的光电转换器件。

电子信息材料

电子信息材料是指在微电子、光电子技术和新型元器件基础产品领域中所用的材料,主要包括单晶硅为代表的半导体微电子材料;激光晶体为代表的光电子材料;介质陶瓷和热敏陶瓷为代表的电子陶瓷材料;钕铁硼(NdFeB)永磁材料为代表的磁性材料;

纳米材料

纳米材料是指三维空间中至少有一维处于1~100nm或由它们作为基体单元构成的材料,其命名出现在20世纪80年代。纳米技术、信息技术及生物技术将成为世纪社会经济发展的三大支柱。

纳米科技的兴起,对我国提出了严峻的挑战,同时也为我国实现跨越式发展提供了难得的机遇。1991年美国将纳米技术列入“政府关键技术”。1993年德国提出今后10年重点发展的9个关键技术中有4个涉及纳米技术。日本、欧盟也都斥巨资用于纳米材料与技术的开发。我国将其列入“863”、“973”计划和“十五”、“十一五”规划,在2001年7月下发了《国家纳米科技发展纲要》,指出我国纳米科技在今后5~10年的主要目标:在纳米科学前沿取得重大进展,奠定发展基础;在纳米技术开发和应用方面取得重大突破;逐步形成精干的、具有交叉综合和持续创新能力的纳米科技骨干队伍;建立全国性的纳米科技研发中心和以企业为主体的产业化基地,促进基础研究、应用研究和产业化的协调发展。 2004年曼彻斯特大学的Geim和Philip Kim首先发现了该材料并于2010年获物理学诺贝尔奖。石墨烯的出现打破了二维晶体无法真实存在的理论预言,带来了众多出乎人们意料的新奇特性,使它成为继富勒烯和碳纳米管后又一个里程碑式的新材料。目前,该材料的研究和产业孕育开发正在全世界范围内轰轰烈烈地展开,都在力争抢占石墨烯产业创新的制高点。

光纤通信材料

磁存储和光盘存储为主的数据存储材料;压电晶体与薄膜材料;贮氢材料和锂离子嵌入材料为代表的绿色电池材料等。这些基础材料及其产品支撑着通信、计算机、信息家电与网络技术等现代信息产业的发展。电子信息材料的总体发展趋势是向着大尺寸、高均匀性、高完整性、以及薄膜化、多功能化和集成化方向发展。当前的研究热点和技术前沿包括柔性晶体管、光子晶体、SiC、GaN、ZnSe等宽禁带半导体材料为代表的第三代半导体材料、有机显示材料以及各种纳米电子材料等。电子信息材料及产品支撑着现代通信、计算机、信息网络技术、微机械智能系统、工业自动化和家电等现代高技术产业。电子信息材料产业的发展规模和技术水平,已经成为衡量一个国家经济发展、科技进步和国防实力的重要标志,在国民经济中具有重要战略地位,是科技创新和国际竞争最为激烈的材料领域。

新能源材料

寻找清洁的能源和可再生能源是当今世界共同关心的问题。太阳能是一种用之不竭的绿色环保能源,太阳能电池材料是新能源材料研究开发的热点,自从1954年单晶硅太阳能电池在贝尔实验室问世以来,硅电池因其较高的光电转换效率(约20%)而在各类光伏电池中占据主导地位。但由于其制造工艺复杂、硅原材料的短缺而限制了硅电池的广泛应用。寻找与传统能源材料价格相当的新材料和制备工艺是太阳能电池能够得到普及的关键。IBM公司研制的多层复合太阳能电池,转换率高达40%。美国能源部在全部氢能研究经费中,大约有50%用于储氢技术。固体氧化物燃料电池的研究十分活跃,关键是电池材料,如固体电解质薄膜和电池阴极材料,还有质子交换膜型燃料电池用的有机质子交换膜等,都是目前产业关注的热点。另外,薄膜太阳能电池由于大大地减少了半导体材料的消耗,也容易批量生产,从而大幅度地降低了太阳能电池的成本,但是效率相对较低,目前商用薄膜电池的光电转换效率只有6~8%。随着纳米技术的发展和成熟,纳米结构材料成为新颖的太阳能电池材料,在太阳能电池中使用纳米结构材料将能够提高太阳能电池的光电转换效率,降低电池的生产成本,对于实现太阳能电池的大规模应用将起着重要的作用,例如燃料敏化纳米晶膜太阳能电池的光电转换效率已达到11.04%,而其成本只有传统硅光电池的十分之一,已成为目前应用前景看好的光电转换器件。

目前新型功能材料是世界各国研究的热点,充满了机遇和挑战,新技术、新专利层出不穷,新型功能材料在整个新材料产业中的市场份额越来越大,我国目前在功能材料的创新性研究和产业化方面与发达国家相比仍有较大差距。但近年来,在国家“863”、“973”、国家自然科学基金等计划的支持下在功能材料领域取得了丰硕的成果,取得了一批接近或达到国际先进水平的研究成果,在国际上占有了一席之地,培养了一批优秀的功能材料研发人才和队伍,随着我国在功能材料系统集成和产学研相结合等方面的完善,我国新型功能材料产业化的能力将得到大幅的提升和快速的发展。

下载发烧友APP

打造属于您的人脉电子圈

关注电子发烧友微信

有趣有料的资讯及技术干货

关注发烧友课堂

锁定最新课程活动及技术直播

电子发烧友观察

一线报道 · 深度观察 · 最新资讯
收藏 人收藏
分享:

评论

相关推荐

一种连续测量汗液中葡萄糖的可穿戴电化学汗液生物传...

随着全球糖尿病发病率的持续增长,市场对无创血糖测量方法的需求越来越高。尽管已经进行了无数次尝试,但目....
发表于 2023-10-20 09:16 38次阅读
一种连续测量汗液中葡萄糖的可穿戴电化学汗液生物传...

聚苯乙烯(PS)三大改性手段

聚乙烯(PE)具有优良的柔性和抗冲击性能,因而有利于提高PS的韧性。但PS和PE是两种不相容的高聚物....
发表于 2023-10-13 16:26 122次阅读
聚苯乙烯(PS)三大改性手段

石墨烯在传感器上的应用

“石墨烯”又名“单层石墨片”,是指一层密集的、包裹在蜂巢晶体点阵上的碳原子,碳原子排列成二维结构,与....
发表于 2023-08-28 14:58 252次阅读
石墨烯在传感器上的应用

超细晶和纳米多孔材料的高效热电制冷性能

来源 |  Materials Today 01 背景介绍 热电( TE )技术作为一种绿色的工程解....
发表于 2023-06-27 09:38 176次阅读
超细晶和纳米多孔材料的高效热电制冷性能

基于一维纳米材料组装体的太阳光辐射调控智能窗户

在建筑物中,减少空调、暖气等室内温控设备的过度使用,是实现节能减排目标的重要途径之一。窗户作为太阳光....
发表于 2023-06-19 09:53 173次阅读
基于一维纳米材料组装体的太阳光辐射调控智能窗户

湘潭大学在胶体量子点近红外探测器领域取得重要研究...

光生电子与空穴在负栅压与内建电场的双重作用下能快速分离与转移,聚积在栅极电介质层界面的光生电子能产出....
发表于 2023-06-14 15:41 228次阅读
湘潭大学在胶体量子点近红外探测器领域取得重要研究...

谈谈大名鼎鼎的石墨烯

碳元素是构成整个自然界的基本元素,也是人们认识最早的一种元素,其独特的物理化学性质与不同的形态随着科....
发表于 2023-06-06 10:16 453次阅读
谈谈大名鼎鼎的石墨烯

张好斌教授:聚合物电磁屏蔽复合材料研究进展

从趋势上看,几乎所有电子产品和器件都在缩短更新换代周期,并且朝着轻量化、精密化、高功率化、多功能化发....
发表于 2023-05-16 10:10 346次阅读
张好斌教授:聚合物电磁屏蔽复合材料研究进展

综述:基于金属纳米材料的可穿戴无创葡萄糖传感器研...

其中,贵金属纳米颗粒具有较高的比表面积和活性,目前已成为应用于可穿戴无创葡萄糖传感器的最常见的纳米材....
发表于 2023-05-12 14:37 321次阅读
综述:基于金属纳米材料的可穿戴无创葡萄糖传感器研...

面外变形对二维纳米材料电子结构的影响机制研究

本项目采用基于密度密度泛函理论的第一性原理计算,对石墨烯中的“零维”面外变形效应进行了深入探究。首先....
发表于 2023-05-12 09:45 305次阅读
面外变形对二维纳米材料电子结构的影响机制研究

氮化镓(GaN)的晶体结构与性质

到目前为止我们已知的GaN有三种晶体结构,它们分别为纤锌矿(Wurtzite)、闪锌矿(Zincbl....
发表于 2023-04-29 16:41 4849次阅读
氮化镓(GaN)的晶体结构与性质

石墨烯的作用和功效

石墨烯纤维及其纺织品可以通过目前工业上可用的防潮技术从具有高质量特性的石墨烯和纤维素中获得,国产石墨....
发表于 2023-04-17 09:44 5975次阅读
石墨烯的作用和功效

超声激活微针贴片,用于双侧增强声化学动力学和声温...

首先,研究人员按照一定的流程成功制备了CuO₂/TiO₂异质结构,并对其进行了相关表征(图2A)。通....
发表于 2023-02-03 11:21 785次阅读
超声激活微针贴片,用于双侧增强声化学动力学和声温...

纳米材料的有益特性可产生更高效的传感器

为什么纳米技术改进了传感器
发表于 2023-01-13 09:45 717次阅读
纳米材料的有益特性可产生更高效的传感器

“爆炸渗流”过程带来先进导电涂料

在实验中,研究人员将聚合物乳胶球加入氧化石墨烯中。通过干燥这种溶液,就像干燥油漆一样,氧化石墨烯被困....
发表于 2022-12-22 14:04 149次阅读
“爆炸渗流”过程带来先进导电涂料

​综述:基于类酶材料的微流控技术在生物分析方面的...

随着生物分析需求的不断增长,如何实现快速、高效、即时的检测成为目前生物分析领域面临的挑战。与传统方法....
发表于 2022-12-21 13:54 454次阅读
​综述:基于类酶材料的微流控技术在生物分析方面的...

添加氧化石墨烯 (GO) 后,混凝土性能可明显改...

混凝土由于其高抗压强度和低成本而成为应用最广泛的建筑材料。混凝土的主要限制是它是一种脆性材料,抗拉强....
发表于 2022-12-15 10:33 626次阅读
添加氧化石墨烯 (GO) 后,混凝土性能可明显改...

石墨烯(Graphene)常见的表征方法

石墨烯该如何表征呢?今天给大家介绍几种对石墨烯来说常见的表征方法,主要包括SEM、TEM、AFM、F....
发表于 2022-12-13 13:54 1471次阅读
石墨烯(Graphene)常见的表征方法

细谈纳米薄膜材料的特性

纳米颗粒膜,特别是Ⅱ—Ⅵ族半导体CdSxSe1-x。以及Ⅲ-V族半导体CaAs的颗粒膜,都观察到光吸....
发表于 2022-12-13 11:41 1635次阅读
细谈纳米薄膜材料的特性

武汉理工大学:宏观石墨烯膜最新研究成果

石墨烯被称为二十一世纪的新材料之王,兼具柔性、轻质及超高的导电、导热与耐腐蚀等特性,在热管理、传感器....
发表于 2022-12-01 09:39 332次阅读
武汉理工大学:宏观石墨烯膜最新研究成果

电化学合成多维纳米硅用于锂离子电池负极材料

研究发现,前处理酸浸温度和电解电位在纳米硅形成过程中起着关键作用。当前驱体在80℃酸处理之后,在-1....
发表于 2022-11-18 11:17 631次阅读
电化学合成多维纳米硅用于锂离子电池负极材料

全球首创“纳米针灸传感针”获最新研究成果

湖北中医药大学检验学院院长、纳米生物传感中心主任张国军教授介绍,该团队一直致力于将纳米生物传感技术运....
发表于 2022-11-08 09:26 363次阅读
全球首创“纳米针灸传感针”获最新研究成果

将碳纤维与碳纳米管(CNT)结合起来

"虽然专利中的信息被成功地用于制造特帕斯卡(terapascal简称TPa)双强度碳纤维,但我们仍在....
发表于 2022-10-27 10:51 424次阅读
将碳纤维与碳纳米管(CNT)结合起来

从幻想走向科学:人类操纵大脑的条条大路

大脑是人类最重要的器官,同时也是我们身体中最神秘的部分。在大脑中,无数的神经元控制了我们的思想、情感....
发表于 2022-10-25 19:52 914次阅读
从幻想走向科学:人类操纵大脑的条条大路

什么是纳米涂层材料?

纳米材料是指由尺寸小于100nm(0.1-100nm)的超细颗粒构成的具有小尺寸效应的零维、一维、二....
发表于 2022-10-19 11:17 4087次阅读
什么是纳米涂层材料?

石墨烯在样品前处理中的应用

然而,石墨烯的强疏水性也导致其在水相中易团聚,导致高比表面积的优势得不到充分发挥。氧化石墨烯除了具有....
发表于 2022-10-19 10:01 658次阅读
石墨烯在样品前处理中的应用

表面结构单元对纳米材料表面性质和形貌的影响

作者根据Wulff理论并与表面能数据制了每个NCM的晶粒形貌(图4)。在该理论中,较小的表面能值往往....
发表于 2022-08-30 16:01 1256次阅读
表面结构单元对纳米材料表面性质和形貌的影响

基于“指数扩增反应-包覆式DNA四面体镊子”的生...

此外,该团队利用指数扩增反应(EXPAR)的增敏效果,开发了多目标物灵敏检测的EXPAR-cDNA-....
发表于 2022-07-11 11:57 818次阅读
基于“指数扩增反应-包覆式DNA四面体镊子”的生...

一种新型的二维纳米材料:Ti3C2Tx-MXen...

Ti3C2Tx-MXene是一种新型的二维纳米材料,该材料具有良好的金属导电性、亲水性、大比表面积及....
发表于 2022-06-08 09:25 5088次阅读
一种新型的二维纳米材料:Ti3C2Tx-MXen...

MOFs及其衍生金属氧化物在锂离子电池中的应用

MOFs因为其轻质(~0.13g/cm3)、高比表面积(10000m2/g)、结构和组成多样的特点而....
发表于 2022-06-07 10:47 2829次阅读
MOFs及其衍生金属氧化物在锂离子电池中的应用

Ti3C2Tx-MXene成功应用于电致化学发光...

Ti3C2Tx-MXene是一种新型的二维纳米材料,该材料具有良好的金属导电性、亲水性、大比表面积及....
发表于 2022-06-06 10:41 2067次阅读
Ti3C2Tx-MXene成功应用于电致化学发光...

纳米声学技术及其应用

SAM的分辨率有限。因此,为了在亚微米分辨率下表征材料特性,使用了另一种被称为原子力声学显微镜(AF....
发表于 2022-04-27 10:38 1188次阅读
纳米声学技术及其应用

绝缘高导热b-BN氮化硼及二维氮化硼纳米片

关键词:六方氮化硼,纳米材料,5G,低介电,绝缘,透波,高导热,国产高端导言:六方氮化硼(h⁃BN)....
发表于 2022-03-28 17:05 2131次阅读
绝缘高导热b-BN氮化硼及二维氮化硼纳米片

光刻胶中金属杂质对硅基基质的吸附机理 南通华林科...

应用放射性示踪技术研究了金属杂质(如钡、铯、锌和锰)从化学放大光刻胶中迁移和吸附到硅基底层衬底上的行....
发表于 2021-12-13 10:02 805次阅读
光刻胶中金属杂质对硅基基质的吸附机理 南通华林科...

可快速诊断早期乳腺癌新型介孔材料的生物传感器

据麦姆斯咨询报道,西班牙研究团队开发出一款新型生物传感器原型,以帮助检测早期乳腺癌,该项研究尚处于实....
发表于 2021-06-15 17:44 1566次阅读
可快速诊断早期乳腺癌新型介孔材料的生物传感器

一种被称为“自我感知超材料”的新型纳米材料

美国匹兹堡大学斯万森工程学院智能结构监测与响应测试(Intelligent Structural M....
发表于 2021-06-15 14:41 2476次阅读
一种被称为“自我感知超材料”的新型纳米材料

被称为“自我感知超材料”的新型纳米材料有望引领下...

从大型桥梁到小型医疗植入物,传感器已经无处不在,它们所扮演的角色正日益重要。传感器可以持续监测环境变....
发表于 2021-06-15 09:26 2070次阅读
被称为“自我感知超材料”的新型纳米材料有望引领下...

基于介孔材料的生物传感器可快速诊断早期乳腺癌

据麦姆斯咨询报道,西班牙研究团队开发出一款新型生物传感器原型,以帮助检测早期乳腺癌,该项研究尚处于实....
发表于 2021-06-12 17:06 1171次阅读
基于介孔材料的生物传感器可快速诊断早期乳腺癌

PVC氢气管道渗漏具体的修补过程是怎样的

氯碱企业的氢气管道多数是pvc材质的,各个连接部位是热熔焊接而成,焊接时的缺陷导致含氢气和30%氢氧....
发表于 2021-04-09 16:07 871次阅读
PVC氢气管道渗漏具体的修补过程是怎样的

对于煤磨辊芯辊皮磨损,我们应该如何维修

煤磨在运转过程中承受巨大的冲击和震动,大部分企业无法有效及时地紧固压盘螺栓,导致辊皮松动,辊皮与辊芯....
发表于 2021-04-08 15:03 421次阅读
对于煤磨辊芯辊皮磨损,我们应该如何维修

碳纳米聚合物材料可治理脱硫泵变径管道冲刷腐蚀的问...

由于脱硫泵工作条件比较特殊,并且环境恶劣,气蚀、腐蚀、磨损都极为强烈,所以脱硫泵在使用一段时间后极易....
发表于 2021-04-08 15:01 319次阅读
碳纳米聚合物材料可治理脱硫泵变径管道冲刷腐蚀的问...

浅谈100吨转炉耳轴传动侧轴承位磨损轻松修复方法

耳轴常应用于大型转炉炉体上,也是比较普遍的一种轴承。由于设备庞大,受环境和压力等情况,转炉耳轴传动侧....
发表于 2021-04-07 15:29 478次阅读
浅谈100吨转炉耳轴传动侧轴承位磨损轻松修复方法

对于HRM立磨辊芯磨损,哪种修复工艺可延长寿命

HRM型立式磨作为一种新型节能粉磨设备被许多企业广泛使用,立磨磨盘和磨辊是重要的研磨部件,而立磨辊芯....
发表于 2021-03-31 15:37 400次阅读
对于HRM立磨辊芯磨损,哪种修复工艺可延长寿命

运输皮带纵向撕裂划伤用什么材料可实现快速修复

运输皮带是带式输送机的主要部件,主要用于煤炭、矿山、冶金、化工、建筑和交通等部门的大规模连续化运输,....
发表于 2021-03-31 15:06 1352次阅读
运输皮带纵向撕裂划伤用什么材料可实现快速修复

煤粉集尘器焊缝渗漏不用电焊现场封堵技术的介绍

煤粉集尘器焊缝出现渗漏情况: 某水泥企业煤粉集尘器三分之二的过滤布袋出现渗漏,渗漏的原因是部分布袋出....
发表于 2021-03-31 15:03 352次阅读
煤粉集尘器焊缝渗漏不用电焊现场封堵技术的介绍

轴承座磨损垫铜皮如何解决,有什么有效方法

轴承座一般指安装轴承的空间,它的加工精度一般较高。轴承座磨损问题是所有传动部件的通病,有的企业为了节....
发表于 2021-03-29 16:58 935次阅读
轴承座磨损垫铜皮如何解决,有什么有效方法

纸机烘缸轴头单边20mm磨损,现场该如何维修

一、烘缸轴头磨损案例说明: 某企业纸机烘缸直径:1800mm、车速:400m/min左右;轴头直径:....
发表于 2021-03-29 15:55 353次阅读
纸机烘缸轴头单边20mm磨损,现场该如何维修

换热器管板腐蚀严重,用什么材料可做到防腐保护

换热器渗漏是使用中比较常见的设备问题,渗漏主要是腐蚀造成的。使用换热器管板部分一般与工业冷却水接触,....
发表于 2021-03-23 15:32 685次阅读
换热器管板腐蚀严重,用什么材料可做到防腐保护

修复碎煤机传动轴轴径磨损的方法是怎样的

碎煤机是一种带有破碎环的冲击转子式破碎机,碎煤机主要适用于燃煤电厂,因锅炉用煤通常是未经过分级的原煤....
发表于 2021-03-21 11:03 365次阅读
修复碎煤机传动轴轴径磨损的方法是怎样的

碳纳米聚合物材料修补干式煤气柜腐蚀泄露的过程介绍

干式煤气柜腐蚀泄露问题是比较常见的,但腐蚀机理是比较复杂的,无论是气相腐蚀还是液相腐蚀,归根到底都属....
发表于 2021-03-21 11:01 442次阅读
碳纳米聚合物材料修补干式煤气柜腐蚀泄露的过程介绍

我们该如何处理提升机主轴轴径磨损的故障

提升机是通过改变势能进行运输的大型机械设备,如矿井提升机、过坝提升机等。大型提升机设备的主轴在使用过....
发表于 2021-03-16 14:29 404次阅读
我们该如何处理提升机主轴轴径磨损的故障