完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
电子发烧友网技术文库为您提供最新技术文章,最实用的电子技术文章,是您了解电子技术动态的最佳平台。
时间复杂度不是测量一个算法或一段代码在某个机器或者条件下运行所花费的时间。时间复杂度一般指时间复杂性,时间复杂度是一个函数,它定性描述该算法的运行时间,允许我们在不运行它们的情况下比较不同的算法。...
如果图像数据集具有丰富的基于纹理的特征,如果将额外的纹理特征提取技术作为端到端体系结构的一部分,则深度学习技术会更有效。...
前缀树是算法正确性的保证,而状态转移可以大幅优化时间。同时,状态转移需要层次遍历整棵前缀树,这意味转移状态的构建不能随前缀树形态更改而自动更改,而必须全量重新构建。...
想让神经网络输出的output跟你期望的ground truth差不多,那就是不断减小二者间的差异,这个差异是你自己定义的,也就是目标函数(object function)或者就是损失函数。...
OpenAI 最先进的语言模型 GPT-3需要惊人的数以亿计的操作来训练,并且花费了大约 500 万美元的计算时间。工程师们认为他们已经找到了一种通过使用不同的数字表示方式来减轻负担的方法。...
在本论文研究中,作者们提出使用深度学习技术,通过快速准确地预测具有不同几何结构特征的众多设计候选方案的物理特性,加速MEMS设计周期。...
有三个因素会影响景深的范围:光圈大小、对焦距离以及镜头焦距 有一些因素相比之下更好控制。比如光圈的大小,相比另外两项参数就更容易改变。...
这一代人工智能浪潮也许到终点还是没有推理能力,没有可解释能力。而下一波人工智能浪潮的兴起,就是实现具有推理、具有可解释性、具有认知的人工智能。...
自迎来以深度学习为代表的第三次发展浪潮,人工智能技术已被广泛应用在目标检测、图像识别、自然语言处理(NLP)等场景,从语音识别、自动送餐机器人到生产线影像监控,AI的身影无处不在。...
简单来说,自旋玻璃理论研究的是物理学中的复杂系统,对于理解无序自旋相互作用系统发挥了非常重要的作用,近年来该理论框架为约束满足、组合优化、统计推断、神经网络等理论研究提供了众多启发。...
一直以来,Hinton 坚信深度学习革命的到来。1986 年,Hinton 等人的论文《Learning representations by back-propagating errors》提出了训练多层神经网络的反向传播算法,他便坚信这就是人工智能的未来。...
SVHN数据集用来检测和识别街景图像中的门牌号,从大量街景图像的剪裁门牌号图像中收集,包含超过600000幅小图像,这些图像以两种格式呈现:一种是完整的数字,即原始的、分辨率可变的、彩色的门牌号图像,每个图像包括检测到的数字的转录以及字符级边界框。...
熟悉图像滤波会更容易理解卷积神经网络为什么有效;残差收缩网络将传统方法中的软阈值思想融入进残差网络ResNet;PWC-Net将光流法和用于提取特征的神经网络结合。...
在本篇文章中,我将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。这篇文档也算是EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介绍EasyPR的内核。...
TensorFlow 数据集(TensorFlow DataSets)是一系列现成的数据集,可用于 TensorFlow 或其他 Python 机器学习框架(例如 Jax)。帮助开发者快速构建和验证机器学习模型原型,无需人工花费大量时间收集和标记数据。...
数字化过程中的信息丢失是造成计算机视觉难度的另一个主要因素。图像处理的本质是从3D世界(如果我们处理视频流中的数据则是4D)投影到2D平面(即平面图像)上获取信息。...
在服务端的所有组件中,人工智能处理属于计算密集型的处理器,也是整个系统应用性能的瓶颈。因此,需要多台人工智能处理器并行处理用户的服务请求,人工智能处理器的数量是根据用户请求的数量确定的,处理器数量越多,翻译的速度就越快。...
来自埃默里大学的一项研究从狗的大脑中解码了视觉图像,首次揭示了狗的大脑如何重建它所看到的东西。这项研究发表在《可视化实验期刊》上。...
随著嵌入式AI芯片各种智能终端设备应用的增加,一般的处理器已经无法满足终端设备智能特性的需求,所以越来越多的芯片制造商侧重开发AI芯片,AI芯片初创公司越来越多,大量风投正涌入AI芯片市场,整个AI芯片市场正蓬勃发展。...