数组vs.动态申请
在嵌入式系统中动态内存申请存在比一般系统编程时更严格的要求,这是因为嵌入式系统的内存空间往往是十分有限的,不经意的内存泄露会很快导致系统的崩溃。
所以一定要保证你的malloc和free成对出现,如果你写出这样的一段程序:
char * (void)
{
char *p;
p = (char *)malloc(…);
if(p==NULL)
…;
… /* 一系列针对p的操作 */
return p;
}
在某处调用(),用完中动态申请的内存后将其free,如下:
char *q = ();
…
free(q);
上述代码明显是不合理的,因为违反了malloc和free成对出现的原则,即“谁申请,就由谁释放”原则。不满足这个原则,会导致代码的耦合度增大,因为用户在调用函数时需要知道其内部细节!
正确的做法是在调用处申请内存,并传入函数,如下:
char *p=malloc(…);
if(p==NULL)
…;
(p);
…
free(p);
p=NULL;
而函数则接收参数p,如下:
void (char *p)
{
… /* 一系列针对p的操作 */
}
基本上,动态申请内存方式可以用较大的数组替换。对于编程新手,笔者推荐你尽量采用数组!嵌入式系统可以以博大的胸襟接收瑕疵,而无法“海纳”错误。毕竟,以最笨的方式苦练神功的郭靖胜过机智聪明却范政治错误走反革命道路的杨康。
给出原则:
(1)尽可能的选用数组,数组不能越界访问(真理越过一步就是谬误,数组越过界限就光荣地成全了一个混乱的嵌入式系统);
(2)如果使用动态申请,则申请后一定要判断是否申请成功了,并且malloc和free应成对出现!
在嵌入式系统的编程中,常常要求在特定的内存单元读写内容,汇编有对应的MOV指令,而除C/C++以外的其它编程语言基本没有直接访问绝对地址的能力
关键字const
const意味着“只读”。区别如下代码的功能非常重要,也是老生长叹,如果你还不知道它们的区别,而且已经在程序界摸爬滚打多年,那只能说这是一个悲哀:
const int a;
int const a;
const int *a;
int * const a;
int const * a const;
(1) 关键字const的作用是为给读你代码的人传达非常有用的信息。例如,在函数的形参前添加const关键字意味着这个参数在函数体内不会被修改,属于“输入参数”。在有多个形参的时候,函数的调用者可以凭借参数前是否有const关键字,清晰的辨别哪些是输入参数,哪些是可能的输出参数。
(2)合理地使用关键字const可以使编译器很自然地保护那些不希望被改变的参数,防止其被无意的代码修改,这样可以减少bug的出现。
const在C++语言中则包含了更丰富的含义,而在C语言中仅意味着:“只能读的普通变量”,可以称其为“不能改变的变量”(这个说法似乎很拗口,但却最准确的表达了C语言中const的本质),在编译阶段需要的常数仍然只能以#define宏定义!故在C语言中如下程序是非法的:
const int SIZE = 10;
char a[SIZE]; /* 非法:编译阶段不能用到变量 */
关键字volatile
C语言编译器会对用户书写的代码进行优化,譬如如下代码:
int a,b,c;
a = inWord(0x100); /*读取I/O空间0x100端口的内容存入a变量*/
b = a;
a = inWord (0x100); /*再次读取I/O空间0x100端口的内容存入a变量*/
c = a;
很可能被编译器优化为:
int a,b,c;
a = inWord(0x100); /*读取I/O空间0x100端口的内容存入a变量*/
b = a;
c = a;
但是这样的优化结果可能导致错误,如果I/O空间0x100端口的内容在执行第一次读操作后被其它程序写入新值,则其实第2次读操作读出的内容与第一次不同,b和c的值应该不同。在变量a的定义前加上volatile关键字可以防止编译器的类似优化,正确的做法是:
volatile int a;
volatile变量可能用于如下几种情况:
(1) 并行设备的硬件寄存器(如:状态寄存器,例中的代码属于此类);
(2) 一个中断服务子程序中会访问到的非自动变量(也就是全局变量);
(3) 多线程应用中被几个任务共享的变量。
CPU字长与存储器位宽不一致处理
在背景篇中提到,本文特意选择了一个与CPU字长不一致的存储芯片,就是为了进行本节的讨论,解决CPU字长与存储器位宽不一致的情况。80186的字长为16,而NVRAM的位宽为8,在这种情况下,我们需要为NVRAM提供读写字节、字的接口,如下:
typedef unsigned char BYTE;
typedef unsigned int WORD;
/* 函数功能:读NVRAM中字节
* 参数:wOffset,读取位置相对NVRAM基地址的偏移
* 返回:读取到的字节值
*/
extern BYTE ReadByteNVRAM(WORD wOffset)
{
LPBYTE lpAddr = (BYTE*)(NVRAM + wOffset * 2); /* 为什么偏移要×2? */
return *lpAddr;
}
/* 函数功能:读NVRAM中字
* 参数:wOffset,读取位置相对NVRAM基地址的偏移
* 返回:读取到的字
*/
extern WORD ReadWordNVRAM(WORD wOffset)
{
WORD wTmp = 0;
LPBYTE lpAddr;
/* 读取高位字节 */
lpAddr = (BYTE*)(NVRAM + wOffset * 2); /* 为什么偏移要×2? */
wTmp += (*lpAddr)*256;
/* 读取低位字节 */
lpAddr = (BYTE*)(NVRAM + (wOffset +1) * 2); /* 为什么偏移要×2? */
wTmp += *lpAddr;
return wTmp;
}
/* 函数功能:向NVRAM中写一个字节
*参数:wOffset,写入位置相对NVRAM基地址的偏移
* byData,欲写入的字节
*/
extern void WriteByteNVRAM(WORD wOffset, BYTE byData)
{
…
}
/* 函数功能:向NVRAM中写一个字 */
*参数:wOffset,写入位置相对NVRAM基地址的偏移
* wData,欲写入的字
*/
extern void WriteWordNVRAM(WORD wOffset, WORD wData)
{
…
}
子贡问曰:Why偏移要乘以2?
子曰:请看图1,16位80186与8位NVRAM之间互连只能以地址线A1对其A0,CPU本身的A0与NVRAM不连接。因此,NVRAM的地址只能是偶数地址,故每次以0x10为单位前进!
子贡再问:So why 80186的地址线A0不与NVRAM的A0连接?
子曰:请看《IT论语》之《微机原理篇》,那里面讲述了关于计算机组成的圣人之道。
总结
本篇主要讲述了嵌入式系统C编程中内存操作的相关技巧。掌握并深入理解关于数据指针、函数指针、动态申请内存、const及volatile关键字等的相关知识,是一个优秀的C语言程序设计师的基本要求。当我们已经牢固掌握了上述技巧后,我们就已经学会了C语言的99%,因为C语言最精华的内涵皆在内存操作中体现。
我们之所以在嵌入式系统中使用C语言进行程序设计,99%是因为其强大的内存操作能力!
如果你爱编程,请你爱C语言;
如果你爱C语言,请你爱指针;
如果你爱指针,请你爱指针的指针!
C语言嵌入式系统编程注意事项之屏幕操作
现在要解决的问题是,嵌入式系统中经常要使用的并非是完整的汉字库,往往只是需要提供数量有限的汉字供必要的显示功能
汉字处理
现在要解决的问题是,嵌入式系统中经常要使用的并非是完整的汉字库,往往只是需要提供数量有限的汉字供必要的显示功能。例如,一个微波炉的LCD上没有必要提供显示“电子邮件”的功能;一个提供汉字显示功能的空调的LCD上不需要显示一条“短消息”,诸如此类。但是一部手机、小灵通则通常需要包括较完整的汉字库。
如果包括的汉字库较完整,那么,由内码计算出汉字字模在库中的偏移是十分简单的:汉字库是按照区位的顺序排列的,前一个字节为该汉字的区号,后一个字节为该字的位号。每一个区记录94个汉字,位号则为该字在该区中的位置。因此,汉字在汉字库中的具体位置计算公式为:94*(区号-1)+位号-1。减1是因为数组是以0为开始而区号位号是以1为开始的。只需乘上一个汉字字模占用的字节数即可,即:(94*(区号-1)+位号-1)*一个汉字字模占用字节数,以16*16点阵字库为例,计算公式则为:(94*(区号-1)+(位号-1))*32。汉字库中从该位置起的32字节信息记录了该字的字模信息。
对于包含较完整汉字库的系统而言,我们可以以上述规则计算字模的位置。但是如果仅仅是提供少量汉字呢?譬如几十至几百个?最好的做法是:
定义宏:
# define EX_FONT_CHAR()
# define EX_FONT_UNICODE_VAL() (),
# define EX_FONT_ANSI_VAL() (),
定义结构体:
typedef struct _wide_unicode_font16x16
{
WORD ; /* 内码 */
BYTE data[32]; /* 字模点阵 */
}Unicode;
#define CHINESE_CHAR_NUM … /* 汉字数量 */
电子发烧友App





评论