0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器人视觉存在的问题及研究方向

OaXG_jingzhengl 来源:yxw 2019-06-04 10:35 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

到现在为止,机器人视觉系统已经经历了三代的发展,从第一代的按规定流程对图像进行处理并输出结果,到第二代由计算机、图像输入设备、结果输出硬件构成的视觉系统,及现在最新的采用高速图像处理芯片,并进行算法,具有高度的智能和普通适用性,能模拟人的高度视觉功能。典型的机器人视觉系统组成包括:图像采集部分、图像处理部分、运动控制部分。

机器视觉系统主要应用在检测、识别、测量、定位等方面。目前机器人视觉主要存在的问题:

1、如何准确、高速(实时)地识别出目标。

2、如何有效地构造和组织出可靠的识别算法,并且顺利地实现。这期待着高速的阵列处理单元,以及算法(如神经网络法、小波变换等算法)的新突破,这样就可以用极少的计算量高度地并行实现功能。

3、实时性是一个难以解决的重要问题。图像采集速度较低以及图像处理需要较长时间给系统带来明显的时滞,此外视觉信息的引入也明显增大了系统的计算量,例如计算图像雅可比矩阵、估计深度信息等等。图像处理速度是影响视觉系统实时性的主要瓶颈之一。

4、稳定性是所有控制系统首先考虑的问题,对于视觉控制系统,无论是基于位置、基于图像或者混合的视觉伺服方法都面临着如下问题:当初始点远离目标点时,如何保证系统的稳定性,即增大稳定区域和保证全局收敛;为了避免伺服失败,如何保证特征点始终处在视场内。

机器人视觉应当进一步研究的问题:

1、图像特征的选择问题。

视觉伺服的性能密切依赖于所用的图像特征,特征的选择不仅要考虑识别的指标,还要考虑控制指标。从控制的观点看,用冗余特征可抑制噪声的影响,提高视觉伺服的性能,但又会给图像处理增加难度。因此如何选择性能最优的特征,如何处理特征以及如何评价特征,都是需要进一步研究的问题。针对任务有时可能需要从一套特征切换到另一套,可以考虑把全局特征与局部特征结合起来。

2、结合计算机视觉及图像处理的研究成果,建立机器人视觉系统的专用软件库。

3、加强系统的动态性能研究。目前的研究多集中于根据图像信息确定期望的机器人运动这一环节上,而对整个视觉伺服系统的动态性能缺乏研究。

4、利用智能技术的成果。

5、利用主动视觉的成果。

主动视觉是当今计算机视觉和机器人视觉研究领域中的一个热门课题。它强调的是视觉系统与其所处环境之间的交互作用能力。与传统的通用视觉不同,主动视觉强调两点,一是认为视觉系统应具有主动感知的能力,二是认为视觉系统应基于一定的任务(TaskDirected)或目的,主动视觉认为在视觉信息获取过程中,应更主动地调整摄像机的参数,如方向、焦距、孔径等并能使摄像机迅速对准感兴趣的物体。

更一般地,它强调注视机制,强调对分布于不同空间范围和时间段上的信号采用不同的分辨率有选择性地感知,这种主动感知既可在硬件层上通过摄像机物理参数的调整实现,也可以在基于被动摄像机的前提下,在算法和表示层上通过对已获得的数据有选择性地处理实现。同时,主动视觉认为不基于任何目的的视觉过程是毫无意义的,必须将视觉系统与具有的目的(如导航、识别、操作等)相联系,从而形成感知/作用环。

6、多传感器融合问题。视觉传感器具有一定的使用范围,如能有效地结合其它传感器,利用它们之间性能互补的优势,便可以消除不确定性,取得更加可靠、准确的结果。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人
    +关注

    关注

    213

    文章

    30619

    浏览量

    219686
  • 机器视觉
    +关注

    关注

    163

    文章

    4735

    浏览量

    125044
  • 人工智能
    +关注

    关注

    1813

    文章

    49757

    浏览量

    261676

原文标题:机器人视觉存在的问题及研究方向

文章出处:【微信号:jingzhenglizixun,微信公众号:机器人博览】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    RK3576机器人核心:三屏异显+八路摄像头,重塑机器人交互与感知

    瑞芯微RK3576 AIoT处理器处理器凭借其卓越的多屏异显与8路摄像头接入能力,为机器人领域带来革新。米尔电子MYD-LR3576开发板实测数据显示,在高负载下CPU占用仅34%,完美实现多路视觉
    发表于 10-29 16:41

    奥比中光领跑韩国机器人3D视觉市场

    近日,国际权威行业研究机构Interact Analysis发布《韩国商用及工业移动机器人3D视觉市场分析》报告(以下简称“报告”)。数据显示,奥比中光在韩国商用和工业移动机器人3D
    的头像 发表于 10-23 16:27 483次阅读

    机器人竞技幕后:磁传感器芯片激活 “精准感知力”

    立体空间坐标系。相较于传统陀螺仪易受振动干扰的问题,它在复杂环境下方向稳定性提升超 30%。比如 “障碍跑酷” 项目里,机器人 1 秒内需完成 7 次方向调整,该芯片提供的 0.1° 精度方位数据,能
    发表于 08-26 10:02

    工业机器人的特点

    的基础,也是三者的实现终端,智能制造装备产业包括高档数控机床、工业机器人、自动化成套生产线、精密仪器仪表、智能传感器、汽车自动化焊接线、柔性自动化生产线、智能农机、3D 打印机等领域。而智能制造装备中工业
    发表于 07-26 11:22

    协作机器人厂商为何要自研视觉方案

    年来,不少协作机器人厂商推出了“手眼一体”的协作机器人本体产品,或在研发视觉相机及视觉软件系统。
    的头像 发表于 06-19 14:58 866次阅读

    轮式移动机器人电机驱动系统的研究与开发

    【摘 要】以嵌入式运动控制体系为基础,以移动机器人研究对象,结合三轮结构轮式移动机器人,对二轮差速驱动转向自主移动机器人运动学和动力学空间模型进行了分析和计算,
    发表于 06-11 14:30

    盘点#机器人开发平台

    地瓜机器人RDK X5开发套件地瓜机器人RDK X5开发套件产品介绍 旭日5芯片10TOPs算力-电子发烧友网机器人开发套件 Kria KR260机器人开发套件 Kria KR260-
    发表于 05-13 15:02

    【「# ROS 2智能机器人开发实践」阅读体验】视觉实现的基础算法的应用

    结合IMU(惯性测量单元)进行多传感器融合。 三、总结与展望 技术融合趋势 机器人视觉与SLAM的结合(如视觉惯性里程计VIO)是当前研究热点,未来可能进一步结合语义SLAM,让
    发表于 05-03 19:41

    大象机器人携手进迭时空推出 RISC-V 全栈开源六轴机械臂产品

    识别联调。 进迭时空致力于为智能机器人提供完整全栈优化的RISC-V AI软硬件解决方案,第一代RISC-V AI CPU芯片K1已完成AI视觉感知、AI语音处理、自动避障、路径规划、运动控制等
    发表于 04-25 17:59

    海康机器人布局关节机器人业务

    关节机器人领域迎来一位实力选手。继布局移动机器人机器视觉业务后,海康机器人正在拓展新的产品线。
    的头像 发表于 03-20 10:47 1210次阅读

    【「具身智能机器人系统」阅读体验】2.具身智能机器人的基础模块

    具身智能机器人的基础模块,这个是本书的第二部分内容,主要分为四个部分:机器人计算系统,自主机器人的感知系统,自主机器人的定位系统,自主机器人
    发表于 01-04 19:22

    【「具身智能机器人系统」阅读体验】+两本互为支持的书

    最近在阅读《具身智能机器人系统》这本书的同时,还读了 《计算机视觉之PyTorch数字图像处理》一书,这两本书完全可以视为是互为依托的姊妹篇。《计算机视觉之PyTorch数字图像处理》是介绍
    发表于 01-01 15:50

    【「具身智能机器人系统」阅读体验】2.具身智能机器人大模型

    近年来,人工智能领域的大模型技术在多个方向上取得了突破性的进展,特别是在机器人控制领域展现出了巨大的潜力。在“具身智能机器人大模型”部分,作者研究并探讨了大模型如何提升
    发表于 12-29 23:04

    【「具身智能机器人系统」阅读体验】1.初步理解具身智能

    现状和前沿研究,详细介绍大模型的构建方法、训练数据、模型架构和优化技术。 第4部分(第10章到第13章)深入探讨提升机器人计算实时性、算法安全性、系统可靠性及具身智能数据挑战的具身智能机器人系统
    发表于 12-28 21:12

    【「具身智能机器人系统」阅读体验】+初品的体验

    解决许多技术的和非技术的挑战,如提高智能体的自主性、处理复杂环境互动的能力及确保行为的伦理和安全性。 未来的研究需要将视觉、语音和其他传感技术与机器人技术相结合,以探索更加先进的知识表示和记忆模块,利用强化学习进一步优化决策过程
    发表于 12-20 19:17