0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

自动驾驶拥有蜘蛛侠般感官 会发生什么大的变化呢?

电子工程师 来源:yxw 2019-06-03 10:25 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

蜘蛛侠的“spidey senses”(蜘蛛感官),想必曾经令无数中二少年心向往之。

这种超能力可以让他预判身边即将发生的事情,更好地探测和躲避物体,比如躲过子弹、避免被敌人击中等等。

不过,同款放射性蜘蛛是没有的,但同款“超能力”却被科学家们赋予了机器。

来自凯拉·威尔斯普渡大学的研究人员,将蜘蛛式传感器植入了自动驾驶无人机和汽车的外壳中,试图帮助它们能够更好地探测物体。

我们习以为常的自动驾驶,通常都可以理解为设计一个与人类一样甚至超越人类表现的驾驶水准,因此,其技术路线效法的对象自然也就是人类本身。以深度学习模拟人类的大脑,为决策提供强大的计算能力;以摄像头、激光雷达等代替人类的双眼,实现高效的传感器融合。

然而,且不提目前的传感器技术并没有完全释放类人的潜力,而且即使是真人上阵,也经常有预判失误导致事故。人类的极限,基本决定了此前自动驾驶系统的极限,也难怪马斯克会对目前的无人车感知方案说出——“A task that has little to no chance of being successful or beneficial”(几乎没机会成功或取得收益)的评价。

那么,将动物们或者说超人们的“超能力”引入自动驾驶,会让事情出现转变吗?下面就从有趣的“spidey senses”来聊聊,自动驾驶感应技术的另一种可能性。

蜘蛛侠超能力:

帮自动驾驶“看”得更清楚

蜘蛛的感知能力究竟有何特别之处呢?

这就必须提到它们处理感官信息的速度,比目前最先进的传感器还要快,因此可以更好地在危险环境中避免事故。当然,这并不是蜘蛛的独家技能,蝙蝠、鸟类等其他动物也或多或少都自带“预先避障buff”。

之所以能做到这一点,因为它们的神经末梢与被称为机械感受器的特殊神经元相连。而这种特殊的感应器往往以羽毛、毛发等形式出现,只检测和处理动物生存所必须的信息。

人类在面临危险时虽然也有“汗毛乍起”之类的操作,但这种“直觉”显然已经在进化过程中被消灭得差不多了。因此,人类往往需要尽可能多地收集周围环境的数据来辅助判断,落地到自动驾驶车上,就是“宁可错拍不可放过”的冗余摄像头和传感器。丰田曾财大气粗在自家的自动驾驶原型车上搭载了七台激光雷达(当时单价7999美金/台)。

但是,与人类相反,大自然中的动物们并不需要“面面俱到”,它们会过滤到不需要的信息,以保证自己处理的信息不会过载,同时又保持足够的敏感度。

比如当蜘蛛网以猎物或者配偶相关的频率振动时,蜘蛛毛茸茸的腿(机械感应器就在上面)就会在体内产生一种神经反射,提醒它迅速做出反应。而更低的频率,比如蛛网上的灰尘,机械感应器是“视而不见”的,因为它对蜘蛛的生存安全来说并不重要。

只有某一特定水平的力激活了“多毛的”机械感受器,它们会快速从一种状态(收集过滤信息)转换到另一种状态(计算信息),并做出相应的反应。

核心成员之一Arrieta认为,在自然界,硬件和软件没有清晰的区别,它们相互关联的。比如传感器即可以收集和过滤数据,也可以用来解释和计算数据。这显然与普遍推行的“大脑-器官”仿人类学设计相去甚远。

那么,这种传感器被集成到无人机机翼或汽车外壳上,会产生怎样有趣的变化呢?

为了让自动驾驶机器能够获得“蜘蛛感觉”的超能力,普渡大学的研究者们开发了一种超薄的电容传感器。它能够从环境中接受信息,并根据阈值(如压力或温度的变化)过滤数据,在预定的力水平提示时还会改变形状。而且,不需要电源

这些机械传感器可以被定制来检测特定的力学变化,比如人、猫狗、井盖、石子等,与自动驾驶驾驶需要规避的特定对象相关联,就能实现快速避障的作用。

同时,普渡大学的研究人员与新加坡南洋理工大学、苏黎世联邦理工学院合作,设计了同样的传感器,利用这些“机械感受器”的状态变化来让自动驾驶机器像蜘蛛一样处理数据。

因为可以形变,使得传感器材料内的导电粒子彼此移动得更近,从而允许电流通过传感器并携带信号,这些信息则通知驾驶系统应该如何响应。在机器学习算法的帮助下,传感器们能够以最小的能耗实现自主工作,无形中降低了算力方面的成本。

动物仿生学引入自动驾驶,

有何意义?

相比于前两年的无比“稀奇”,如今大部分吃瓜群众应该都对自动驾驶机器的智障(划掉)智能程度有所了解了。

在避障技术方面,主要就是依靠超声波、激光、视觉、毫米波雷达等传感器的融合及协同工作,获得道路、车辆位置和障碍物等信息,从而使无人车、无人机能够安全灵活地行驶。

然而即使是融合了绝对数量的传感器,无论是在物体识别还是距离估计上,依然很容易出现令人意想不到的差错。

比如之前特斯拉的自动驾驶汽车因为将前方的白色大卡车当成了白云(!),因此发生了车祸。

“高空作业”的无人机也没有好到哪里去,2015年纽约肯尼迪国际机场,一架无人机在7000英尺的高空中就差点撞上一架飞机,二者当时距离只有20英尺远。

之所以会出现这样的局面,主要原因有二:

第一,当前主流的传感器几乎都有自身局限,多传感器相互备份和补充是必不可少的。而多传感器融合协作,面对复杂的现实场景,还要达到360度无死角的高精度监测,庞大的数据量必然会带来堆积和冗余问题。

另外,现有的自动驾驶系统主要将算力集中在决策层面,感知层面的算力不够充沛,自然也就导致处理器难以支撑庞大连续高速的计算压力。一旦数据堆积导致处理延迟,自然也就更容易犯错。

上述重要而关键的问题,目前看来,对症下药只有两个解决方案:

1.提高感知层面的性能要求,对复杂信息和环境实现更高精度的识别。

2.让感知系统能够处理一部分计算任务,过滤掉无意义的数据,为“机器大脑”减负。

既然前面模仿人类生理工作机制的智能化发展不尽如人意,那么向蜘蛛、蝙蝠等“低智能、高机械”生物学习,会不会才是自动驾驶应该拿到的“剧本”呢?

没有人能给出确切的答案,但这不妨碍有不少学者开始在这个方向努力探索了。

以前面提到的“蜘蛛感知”能力为例,AXA Winterthur关于自动驾驶研究的数据显示,一般情况下,提前1.5秒的警示就可以减少90%的追尾碰撞。也就是说,当提前2.5秒给予一个车辆警告的话,基本上可以让系统做到安全刹停,无人机同理。

目前,想要在碰撞时间(TTC)上保障这一前提,只能通过探测距离大于120米的汽车雷达实现。但与此同时,激光雷达的探测精度又十分离散,在120米距离上垂直和水平分辨率已经是0.3-0.5米的级别,这意味着如果前方站着的是一个人,它很有可能会被激光雷达所忽略。而且,由于要进行360度扫描,数据缓存和回传的时间已经足够发生一场悲剧了。

但是借助“蜘蛛感知”的能力,装载了超薄电传感器的自动驾驶机器就能够在感知到信息的瞬间,就迅速计算并选择性地进行处理,或能够有效减少系统大脑的数据负载,从而提升自动驾驶系统的决策效率和灵敏度。

从某种意义上来说,现阶段的自动驾驶感知系统,有点像刚刚开始变异的蜘蛛侠。在漫画《神奇蜘蛛侠》中,他刚开始有了一定预知未来的能力,却总是无法很好地控制自己能看到什么。让机器快速掌握和人脑人眼一样“看”和“听”的能力,也同样是强“机”所难。

更何况,人类自己还没有搞清楚人脑是怎么工作的,又何谈用机器来模仿人脑呢?

或许放下幻想,放低身段,对于动物能力的观察与模仿,才能引领机器走向类脑智能的应许之地。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2573

    文章

    54372

    浏览量

    786084
  • 自动驾驶
    +关注

    关注

    791

    文章

    14670

    浏览量

    176526

原文标题:当自动驾驶遇上“蜘蛛侠”

文章出处:【微信号:smartman163,微信公众号:网易智能】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    自动驾驶汽车如何确定自己的位置和所在车道?

    [首发于智驾最前沿微信公众号]我们平时开车时,判断自己在哪条路、哪个车道,只需要看一眼导航、扫几眼车道线、再听听提示就够了。但对自动驾驶汽车来说,这件事既简单又复杂。简单在于自动驾驶汽车拥有
    的头像 发表于 11-18 09:03 569次阅读
    <b class='flag-5'>自动驾驶</b>汽车如何确定自己的位置和所在车道?

    不同等级的自动驾驶技术要求上有何不同?

    谈到自动驾驶,不可避免地会涉及到自动驾驶分级,美国汽车工程师学会(SAE)根据自动驾驶系统与人类驾驶员参与驾驶行为程度的不同,将
    的头像 发表于 10-18 10:17 2410次阅读

    蚂蚁科技中标近千万自动驾驶项目

    蚂蚁科技(深圳)有限公司凭借领先的技术实力与成熟的行业解决方案,成功中标东营职业学院自动驾驶汽车实训系统项目,中标金额达954.96万元。
    的头像 发表于 09-06 09:40 802次阅读

    如何确保自动驾驶汽车感知的准确性?

    [首发于智驾最前沿微信公众号]自动驾驶汽车想要自动驾驶,首先要做的就是能对周边环境实现精准感知,也就是能“看”清道路,那自动驾驶汽车如何在复杂、快速变化的道路环境中做到感知的精确又可靠
    的头像 发表于 08-23 15:06 1375次阅读
    如何确保<b class='flag-5'>自动驾驶</b>汽车感知的准确性?

    看看那些用树莓派打造的自动驾驶汽车!

    在崭新的汽车时代门槛前,通往未来的道路不再仅由沥青铺就,还承载着人工智能(AI)的无限可能和突破性的创造力。在现实世界中驾驶颇具挑战,因为可能会发生各种意外事件。正因如此,打造一辆真正安全的自动驾驶
    的头像 发表于 07-27 13:24 583次阅读
    看看那些用树莓派打造的<b class='flag-5'>自动驾驶</b>汽车!

    自动驾驶汽车是如何准确定位的?

    厘米级的定位精度,并能够实时响应环境变化。为此,自动驾驶系统通常采用多传感器融合的方式,将全球导航卫星系统(GNSS)、惯性测量单元(IMU)、激光雷达(LiDAR)、摄像头、超宽带(UWB)等多种传感器数据进行综合处理,通过算
    的头像 发表于 06-28 11:42 883次阅读
    <b class='flag-5'>自动驾驶</b>汽车是如何准确定位的?

    卡车、矿车的自动驾驶和乘用车的自动驾驶在技术要求上有何不同?

    [首发于智驾最前沿微信公众号]自动驾驶技术的发展,让组合辅助驾驶得到大量应用,但现在对于自动驾驶技术的宣传,普遍是在乘用车领域,而对于卡车、矿车的自动驾驶发展,却鲜有提及。其实在卡车、
    的头像 发表于 06-28 11:38 718次阅读
    卡车、矿车的<b class='flag-5'>自动驾驶</b>和乘用车的<b class='flag-5'>自动驾驶</b>在技术要求上有何不同?

    自动驾驶安全基石:ODD

    电子发烧友网综合报道 自动驾驶ODD(Operational Design Domain)即设计运行域,是指自动驾驶系统被设计为安全、有效运行的具体条件范围。它定义了自动驾驶汽车在哪些环境、场景
    的头像 发表于 05-19 03:52 5801次阅读

    AI将如何改变自动驾驶

    自动驾驶带来哪些变化?其实AI可以改变自动驾驶技术的各个环节,从感知能力的提升到决策框架的优化,从安全性能的增强到测试验证的加速,AI可以让自动驾驶从实验室走向大规模商业化。 对于感知
    的头像 发表于 05-04 09:58 632次阅读

    自动驾驶经历了哪些技术拐点?

    ,到如今以AI为核心驱动的自动驾驶系统,各大车企都在不断加码研发投入,试图在未来市场中占据制高点。那自动驾驶发展至今,经历了哪些技术拐点自动驾驶系统的发展历程
    的头像 发表于 04-27 15:54 626次阅读
    <b class='flag-5'>自动驾驶</b>经历了哪些技术拐点?

    沃尔沃与Waabi携手开发自动驾驶卡车

    沃尔沃自动驾驶解决方案公司(V.A.S.)近日宣布与加拿大自动驾驶卡车技术公司Waabi建立合作伙伴关系,共同致力于自动驾驶卡车解决方案的研发。
    的头像 发表于 02-10 17:33 848次阅读

    自动驾驶的未来 - 了解如何无缝、可靠地完成驾驶

    作者:Don Horne 投稿人:DigiKey 北美编辑 自动驾驶组件的最新进展使许多驾驶员的“无需干预”成为现实。然而,许多驾驶员对真正自动驾驶汽车的安全性和可靠性仍然存在不情愿和
    的头像 发表于 01-26 21:52 904次阅读
    <b class='flag-5'>自动驾驶</b>的未来 - 了解如何无缝、可靠地完成<b class='flag-5'>驾驶</b>

    L3自动驾驶法规同步登陆北京、武汉 #自动驾驶 #智能驾驶 #交通法规

    自动驾驶
    jf_15747056
    发布于 :2025年01月07日 17:55:43

    从《自动驾驶地图数据规范》聊高精地图在自动驾驶中的重要性

    自动驾驶地图作为L3级及以上自动驾驶技术的核心基础设施,其重要性随着智能驾驶技术的发展愈发显著。《自动驾驶地图数据规范》(DB11/T 2041-2022)由北京市规划和自然资源委员会
    的头像 发表于 01-05 19:24 2868次阅读
    从《<b class='flag-5'>自动驾驶</b>地图数据规范》聊高精地图在<b class='flag-5'>自动驾驶</b>中的重要性