0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习中的相关概念、数学知识和各种经典算法

电子工程师 来源:lp 2019-03-15 14:40 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

近日,来自SAP(全球第一大商业软件公司)的梁劲(Jim Liang)公开了自己所写的一份 520 页的学习教程(英文版),详细、明了地介绍了机器学习中的相关概念、数学知识和各种经典算法。机器之心看到后,也迫不及待的推广给更多的读者。完整的 PDF 请从文后作者公开的链接下载。

在介绍中,Jim Liang写到:

人工智能是这两年风头正劲的领域,也是未来具有颠覆性可能的新领域。不少人尝试去学习机器学习相关的知识。然而,一旦越过最初的 overview 阶段,很多人就开始打退堂鼓了,然后迅速放弃。

为什么会这样?

极 高 的 学 习 曲 线

首当其冲就是数学,涉及统计学、微积分、概率、线性代数等,大家虽然都学过高等数学,但如果你还记得里面的细节,算你牛。更可能的情况是,多数人都对高等数学忘记了,面对各种算法里的大量公式,感到厌恶,甚至恐惧。

其次因为机器学习本身是一个综合性学科,而且是一个快速发展的学科,知识点散乱,缺乏系统性。

市面上的机器学习/深度学习书籍、文章、教程,遍地开花,但能以清晰的方式表达、循序渐进地讲解的教程,其实不多,大量的教程没有考虑到学习者的基础,使得初学者感到挫败和困惑。

图 解 机 器 学 习

正是对机器学习的过程中的痛苦有切身体会,我希望能做一份教程,以浅显易懂的方式去讲解它,降低大家的学习门槛。我为此花费了数月时间,经常做到深夜,把自己的学习笔记整理成了这份教程。

从结构来看,全部教程包含两部分:

Part 1 介绍了基本概念,包括:

机器学习的流程

数据处理

建模

评估指标(如 MSE、ROC 曲线)

模型部署

过度拟合

正则化等

在第一部分,作者先介绍了如今应用普遍的机器学习:从自动驾驶、语音助手到机器人。其中有些思想,也是众多读者们了解过的,例如:为何机器学习在这个时候会火(大数据、计算力、更好的算法);机器学习、人工智能、深度学习三者的关系等。

除了这些基础概念,这份教程也对机器学习模型的开发流程做了图像化展示(如下图),即使对此不太了解的读者,也能通过这种流程展示有所学习。

建立机器学习解决方案的步骤

在 Part1 的其他小节,作者以类似的图像展示,对数据、建模、模型部署等内容做了详细介绍,这里就不一一列举,可以从原报告查看。

在 Part2,作者介绍了 常用的算法,包括:

线性回归

逻辑回归

神经网络

SVM

Knn

K-Means

决策树

随机森林

AdaBoost

朴素贝叶斯

梯度下降

主成分分析

这部分包含了大量的数学公式,但作者尽力注解了其中的每个公式,从而充分、清晰地表达了众多数学概念。

例如在「神经网络」部分,作者整理了 59 页的笔记(从 311 页到 369 页)。作者从人脑中的神经元架构说起,介绍了人工神经网络(ANN)、人工神经元工作的原理。这份笔记非常注重图像化的概念解释,理解起来非常直观。

例如,下图中的概念解释很形象地展现了生物神经元和人工神经元工作方式的相似性。

生物神经元的树突输入-轴突输出模式和人工神经元的输入输出模式对比。

过拟合的解释。

人工神经元的基础结构。

在涉及到数学公式时,作者会在旁边有详细的注解,如下图所示:

对于并列的可选项(如激活函数、常用神经网络架构等),也会有全面的列表:

常用的激活函数。

然后会有每个激活函数的单独介绍:

Sigmoid 激活函数。

用神经网络分类手写数字的前向传播示例(softmax 激活函数)。

对于神经网络中较为复杂的概念(如求导、反向传播),几张图就能解释清楚:

关于神经网络的完整训练过程,作者用简略流程图+计算细节展开的方式呈现:

反向传播算法完整流程。

前向传播部分的计算细节。

就像前面提到的,这部分除了「神经网络」的介绍,还包括随机森林、梯度下降等概念的介绍,读者们可查看原教程。

总结

看完这份教程之后,小编觉得这是一份包罗万象的学习笔记,既适合非专业人士了解有关机器学习的基础概念,又适合有专业背景的学生进一步学习。

写教程是为了自己持续学习,分享教程是为了帮助更多人学习。就像作者所说,「Learning by doing/teaching, 写这个教程主要是强迫自己持续学习,另外,也想分享给他人,希望能帮助到更多想学习 Machine Learning 的人,降低大家的学习痛苦。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106793
  • 人工智能
    +关注

    关注

    1813

    文章

    49734

    浏览量

    261495
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136231

原文标题:520页的机器学习笔记

文章出处:【微信号:machine_vision_1,微信公众号:机器视觉智能检测】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    量子机器学习入门:三种数据编码方法对比与应用

    在传统机器学习数据编码确实相对直观:独热编码处理类别变量,标准化调整数值范围,然后直接输入模型训练。整个过程更像是数据清洗,而非核心算法组件。量子
    的头像 发表于 09-15 10:27 475次阅读
    量子<b class='flag-5'>机器</b><b class='flag-5'>学习</b>入门:三种数据编码方法对比与应用

    【「Yocto项目实战教程:高效定制嵌入式Linux系统」阅读体验】+基础概念学习理解

    是 Yocto 项目的核心部分之一,书中对元数据的概念、文件、语法以及菜谱和层的相关内容进行了详细阐述。通过学习这部分内容,我了解到元数据在 Yocto 项目中的重要性,它定义了构建系统的各个方面,包括
    发表于 08-04 22:29

    FPGA在机器学习的具体应用

    ,越来越多地被应用于机器学习任务。本文将探讨 FPGA 在机器学习的应用,特别是在加速神经网
    的头像 发表于 07-16 15:34 2632次阅读

    任正非说 AI已经确定是第四次工业革命 那么如何从容地加入进来呢?

    以下是一些可以从容加入AI第四次工业革命的方法: 一、教育与学习方面 基础理论学习 深入学习数学知识,特别是线性代数、概率论与数理统计、微积分等。这些是AI
    发表于 07-08 17:44

    【「# ROS 2智能机器人开发实践」阅读体验】视觉实现的基础算法的应用

    人部署,详细介绍了基于颜色阈值和深度学习的巡线方法。 二维码识别则广泛应用于机器人定位与任务触发,例如AGV(自动导引车)的路径规划。 深度学习机器人视觉
    发表于 05-03 19:41

    请问STM32部署机器学习算法硬件至少要使用哪个系列的芯片?

    STM32部署机器学习算法硬件至少要使用哪个系列的芯片?
    发表于 03-13 07:34

    机器学习模型市场前景如何

    当今,随着算法的不断优化、数据量的爆炸式增长以及计算能力的飞速提升,机器学习模型的市场前景愈发广阔。下面,AI部落小编将探讨机器学习模型市场
    的头像 发表于 02-13 09:39 619次阅读

    数学专业转人工智能方向:考研/就业前景分析及大学四年学习路径全揭秘

    随着AI技术的不断进步,专业人才的需求也日益增长。数学作为AI的基石,为机器学习、深度学习、数据分析等提供了理论基础和工具,因此越来越多的数学
    的头像 发表于 02-07 11:14 1699次阅读
    <b class='flag-5'>数学</b>专业转人工智能方向:考研/就业前景分析及大学四年<b class='flag-5'>学习</b>路径全揭秘

    人工智能和机器学习以及Edge AI的概念与应用

    与人工智能相关各种技术的概念介绍,以及先进的Edge AI(边缘人工智能)的最新发展与相关应用。 人工智能和机器
    的头像 发表于 01-25 17:37 1573次阅读
    人工智能和<b class='flag-5'>机器</b><b class='flag-5'>学习</b>以及Edge AI的<b class='flag-5'>概念</b>与应用

    华为云 Flexus X 实例部署安装 Jupyter Notebook,学习 AI,机器学习算法

    前言 由于本人最近在学习一些机器算法,AI 算法知识,需要搭建一个学习环境,所以就在最近购买的
    的头像 发表于 01-02 13:43 860次阅读
    华为云 Flexus X 实例部署安装 Jupyter Notebook,<b class='flag-5'>学习</b> AI,<b class='flag-5'>机器</b><b class='flag-5'>学习</b><b class='flag-5'>算法</b>

    传统机器学习方法和应用指导

    在上一篇文章,我们介绍了机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础
    的头像 发表于 12-30 09:16 1980次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    【「具身智能机器人系统」阅读体验】1.全书概览与第一章学习

    非常感谢电子发烧友提供的这次书籍测评活动!最近,我一直在学习大模型和人工智能的相关知识,深刻体会到机器人技术是一个极具潜力的未来方向,甚至可以说是推动时代变革的重要力量。能参与这次活动
    发表于 12-27 14:50

    《具身智能机器人系统》第7-9章阅读心得之具身智能机器人与大模型

    医疗领域,手术辅助机器人需要毫米级的精确控制,书中有介绍基于视觉伺服的实时控制算法,以及如何利用大模型优化手术路径规划。工业场景,协作机器人面临的主要挑战是快速适应新工艺流程。具身智
    发表于 12-24 15:03

    【「具身智能机器人系统」阅读体验】+初品的体验

    学习资源,以培养更多的专业人才。随着具身智能机器人技术对社会的影响越来越大,该书还可以向公众普及相关知识,以提升社会对新技术的认知和接受度,从而为技术的发展创造良好的社会环境。 随
    发表于 12-20 19:17

    《具身智能机器人系统》第1-6章阅读心得之具身智能机器人系统背景知识与基础模块

    搜索策略等规划算法,强调了轨迹规划需要考虑机器人的运动学约束。在轨迹规划机器人需要同时考虑最大曲率、加速度限制等物理约束,生成平滑可行的运动轨迹。强化
    发表于 12-19 22:26