0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

新成像技术让太空望远镜将不再庞大

MEMS 来源:cc 2019-01-09 16:34 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

1月3日10时26分,玉兔二号”成功着陆月球背面,在月球背面留下了“人类首次行走”足迹。不过美国的詹姆斯·韦伯空间望远镜由于种种原因,发射时间数次推迟,目前发射时间改为2021年3月30日。

最近以色列的本古里安大学在“合成孔径成像系统”(synthetic aperture systems)技术方面觉得重大进步。该技术可以通过单个小相机在空间中移动中捕获图像,通过搜集数据进行精细分析,获取一个更大相机产生的图像,本质上是合成一个更大的光圈。根据在光学期刊《Optica》上发表的一篇论文显示,国外一个科研团队设计提出了一种新颖的基于合成孔径的成像系统。使用两个同步卫星沿着合成孔径的边界移动,并从观察到的场景中捕获光图案。随后将这两个移动卫星反射的光传输到第三颗卫星中的图像传感器里,通过处理卫星移动过程中捕获到的图案的总和以获得的更大的高质量图像。

BGU研究生Angika Bulbul在新闻发布会上表示:“我们发现只需要一小部分望远镜镜头就可以获得高质量的图像,即使最小的孔径面积仅占全合成孔径面积的0.43%,我们也能获得与镜头成像系统全光圈区域相似分辨率的图像。”换句话说,他们基本上能够获得50倍大小的相机结果。这在任何地方都会令人印象深刻,但在太空中它尤为重要。像把韦伯这样的庞然大物发射放入轨道需要付出相当大的成本和努力。“通过这项技术可以减少巨大的传统光学空间望远镜所需的超高成本”Bulbul表示。“但是如果改为使用少数几颗卫星一起工作,只要其中一颗故障或损坏就可以将其替换掉,这真的开启了新的领域。”

然后这种太空望远镜的最大挑战之一是工作的卫星需要以极高的精度进行测量,目前要保持卫星完全静止是很难的,更不用说让卫星移动到几分之一毫米。为了保持精度,目前许多卫星在计算与作业时,需要使用可靠的固定光源作为参考点。一些天文学家甚至考虑使用激光为这些系统提供一种参考点。无论那种方法都有其优点和缺点,但麻省理工学院的研究人员认为他们已经找到了一种更加永久,高精度的解决方案:将一颗“导星”卫星放置于数千英里外,在地球及其轨道上布置激光区域。这种光源可靠,稳定且高度可见; 卫星可以用它来计算自己的位置,避免由热量和辐射引起的成像装置的微小变化,这种方法可能达到参照恒星坐标点不可能达到的精度。目前这项技术仍然在实验中,随着技术理论中取得的重大进展,相信在未来几年内,成群的卫星将被送入太空,以合成一个巨大的空间望远镜。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 成像技术
    +关注

    关注

    4

    文章

    306

    浏览量

    32155
  • 卫星
    +关注

    关注

    18

    文章

    1821

    浏览量

    69559

原文标题:一项新的成像技术正在实验中,太空望远镜将不再是庞然大物

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    三维成像技术:共聚焦成像vs光片成像的光学切片

    随着科技的进步,多种显微成像技术应运而生,其中共聚焦显微和光片显微因其优异的光学切片能力备受关注,这两类设备分别依托共聚焦成像与光片
    的头像 发表于 10-28 18:04 530次阅读
    三维<b class='flag-5'>成像</b><b class='flag-5'>技术</b>:共聚焦<b class='flag-5'>成像</b>vs光片<b class='flag-5'>成像</b>的光学切片

    Vicor携手Microgate打造全球最大地面光学望远镜

    在智利沙漠的中心 Cerro Armazones 山上,美国公司 Vicor 和意大利公司 Microgate 这两家技术领导者正在携手打造有史以来最大的地面光学望远镜 —— 极大望远镜 (ELT)。得益于高密度电源系统和革命性
    的头像 发表于 09-26 14:01 509次阅读

    光学轮廓仪应用:铝合金反射 NiP 镀层的磁流变抛光技术研究

    铝合金反射是大型太空望远镜等光学系统核心部件,表面质量影响成像精度。NiP镀层经单点金刚石车削后残留螺旋状刀痕,导致色散和重影,需进一步抛光。磁流变抛光因高效、优质、低成本成为潜在方
    的头像 发表于 08-05 18:02 526次阅读
    光学轮廓仪应用:铝合金反射<b class='flag-5'>镜</b> NiP 镀层的磁流变抛光<b class='flag-5'>技术</b>研究

    共聚焦显微原理:纳米级成像技术的关键

    在微观世界中,细节决定成败。共聚焦显微技术,作为一项突破性的成像技术,正引领着纳米级成像的新纪元。它不仅提供了前所未有的高分辨率和对比度,
    的头像 发表于 08-05 17:55 1263次阅读
    共聚焦显微<b class='flag-5'>镜</b>原理:纳米级<b class='flag-5'>成像</b><b class='flag-5'>技术</b>的关键

    Vicor电源模块助力Microgate极大望远镜自适应光学系统制造

    揭开宇宙的秘密,首先需要清晰、详细的视角。遗憾的是,这对于地球望远镜来说是一项极具挑战性的任务,它们需要克服一个主要的障碍:地球大气层。这就是 Microgate 为欧洲南方天文台(ESO)的极大望远镜(ELT)所制造的自适应光学系统发挥作用之处。
    的头像 发表于 06-30 09:10 785次阅读

    VirtualLab应用:施密特-卡塞格林望远镜

    摘要 施密特-卡塞格林望远镜是业余天文望远镜中非常受欢迎的设计,因为它具有高对比度和低像差效应。它由施密特校正板和卡塞格林反射组成。卡塞格林反射由一个凹面主
    发表于 05-21 09:15

    中国实现1.36公里外毫米级成像技术

    外毫米级目标的高分辨成像。实验系统的成像分辨率较干涉仪中的单台望远镜提升约14倍。相关成果日前发表于国际权威学术期刊《物理评论快报》。 传统成像技术
    的头像 发表于 05-13 11:16 695次阅读

    VirtualLab Fusion应用:用于高NA显微成像的工程化PSF

    显微成像技术在最近的几十年中得到迅速发展。 PSF(点扩散函数)通常不是像平面上的艾里斑。当对沿纵轴定向的偶极子源进行成像时,可以设计出一个甜甜圈形状。 我们在VirtualLab Fusion中
    发表于 03-26 08:47

    X射线成像系统:Kirkpatrick-Baez和单光栅干涉仪

    来说明特殊的X射线成像原理。在本通讯中,我们展示了两个X射线成像实验:(1)使用Kirkpatrick-Baez创建纳米级X射线成像点;(2)用单光栅干涉仪说明相衬X射线
    发表于 03-21 09:22

    睿创微纳短波红外探测器助力超新星观测

    据报道,中山大学80厘米红外望远镜在青海冷湖赛什腾山天文观测研究基地投入观测,并成功发布首批观测图像,此为我国新一代地基红外天文望远镜。该望远镜终端搭载的D-BLUE1型深制冷短波红外相机由睿创微纳控股子公司睿创光子自主研发,这
    的头像 发表于 03-07 13:48 800次阅读

    超景深3D检测显微技术解析

    技术的核心在于其能够实现比传统显微更广阔的景深范围,同时保持高分辨率的成像能力,从而为用户提供更为清晰和立体的微观世界视图。 超景深3D检测显微的实现依赖于先进的光学设计和复杂的图
    发表于 02-25 10:51

    VirtualLab Fusion案例:反射式金字塔波前传感器的仿真

    传感器用于特殊的望远镜(例如凯克天文台),通常在红外(IR)光谱范围内。PyWFS通常由四边棱镜、重成像光学元件和适当的探测器组成。在这个例子中,我们展示了通过应用VirtualLab Fusion
    发表于 01-17 09:51

    VirtualLab Fusion案例:单分子显微高NA成像系统的建模

    数值孔径的反射显微系统 这个用例演示了如何使用VirtualLab Fusion的快速物理光学技术建模NA=0.99的高数值孔径紧凑型反射显微系统。 高NA傅里叶显微的单分子
    发表于 01-16 09:52

    反射式金字塔波前传感器的仿真

    传感器用于特殊的望远镜(例如凯克天文台),通常在红外(IR)光谱范围内。PyWFS通常由四边棱镜、重成像光学元件和适当的探测器组成。在这个例子中,我们展示了通过应用VirtualLab Fusion
    发表于 01-07 08:54

    如何提高透镜成像的分辨率

    透镜成像分辨率是指透镜系统能够分辨的最小细节的能力。提高透镜成像分辨率对于许多应用领域,如显微望远镜、相机等,都是至关重要的。以下是一些提高透镜
    的头像 发表于 12-25 16:54 1740次阅读