0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何学习思考问题方法,数据分析在哪个城市需求更加旺盛?

lviY_AI_shequ 来源:lq 2018-12-05 15:55 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

两年前在艾瑞期间写成并发表于知乎“拉勾”话题精华的文章,当时拉勾是我认识数据分析世界的一个窗口,脑中一直萦绕两个问题:

企业愿意为数据分析人付多少钱?

数据分析人要学到什么才会拿到这个钱?

为了解决问题而上拉勾来看JD(Job Description)熟悉工作职能和技能要求,经常是看几小时后而脑袋晕胀(因为不懂的实在太多了)。突然某天我问自己”为什么不把lagou的信息爬下来并做个统计?一个做数据分析的人竟然这样原始地(手动)统计数据?”一周内搞定从爬取、解析分词、分析出图,从自己关心的细分维度回答问题:

就自身发展上看:

数据分析师一般几年会遇到瓶颈?(看工资在哪些年限上会有明显阶跃)

在不同的阶段应该学哪些工具?

从公司平台上看:

融资到什么阶段的公司会愿意付相对高的价格来聘请数据分析师?

公司规模/人数会不会产生影响?

北上广深的数据分析师相同资质下会不会有收入差异?

文章是以201510数据为基础搭建,数据会过时,思考问题的方法不会。

如何学习思考问题方法:聪明人是“别人生病,自己吃药” (不需要跟我一样去经历这个阶段,而获得这份经验)。把自己代入到场景,你会如何做?把做法整理并复盘得失;现实遇到困难,把自己想象成master去解决。就像我在看《穷查理宝典》的时候会代入书中的场景,假如我是查理芒格,我做的演讲是出于什么心情、背后代表什么心态?(尽可能理解透彻)在现实投资过程中,我遇到问题时会想象成查理芒格来做思考。

这篇文章对我的反思:为了消除对未知的恐惧,通过拉勾平台以公司付费的角度来评价数据分析师的价值,e.g. 当知道1-3年互联网金融公司の会python数据分析师每月2W的薪资,我就像从乱麻中牵扯出线头那样开心。整个过程中最重要的是求知若渴的心,而智慧与否只是会加速或减缓这个学习的过程。

为什么我一直在谈钱,因为公司拿出真金白银来雇用你,大概率情况下,说明公司愿意付费来购买你的价值,间接证明你的价值所在。

附上爬虫python源码(https://github.com/lichald),感兴趣的童鞋可以自己尝试。

/ 01 /

数据分析在哪个城市需求更加旺盛?

北京领先全国:从总值上看,北京在数据挖掘岗位open的职位数量和公司数量上占据绝对优势,甚至超过后面4个城市的数值加和;仅就北京和上海相比,公司数量是3倍,职位数量是4倍。从公司平均招聘人数上看,北京也领先于其他城市。即使排除拉勾网base在北京中关村地利优势和3W咖啡的线下优势,北京的数值依然是遥遥领先。

/ 02 /

公司如何定价员工的工作资历?

主流1-5年在21-25K:工作经历在1-5年的现在需求最旺盛,且大多数公司均会给到11-25K的价位。且对于11-15K、16-20K、21-25K三个细分档次的价位,用人单位对于1-3年工作经验的人11-15K是主流价码,优秀的人可以提升至16-20K,更优秀的再提升至21-25K;用人单位对于3-5年工作经验的人21-25K是主流价码,有经验但能力欠缺的降至16-20K,再弱一些的就降至11-15K。

“经验不限”注重能力导向:有相当一部分企业对于“经验不限”的情况大多数也愿意给出11-15K和21-25K的价位,说明在互联网领域仍有企业是看重能力而不是资历,对于经验有相当的自由度。

乱世出英雄:另外对于5-10年的人员数量非常低,排除专业猎头分的蛋糕之外,也可能说明这个行业的专家非常少,或者是企业的数据挖掘需求还远没有达到需要专家的级别。这两点结合来看,专家权威效应不明显,企业看重能力而非资历,对于这个行业的新人是利好的消息。

新人打好基本功:企业对于1年以下经验的人招聘数量和薪资认可方面都是非常低的,说明新人前1-2年先不着急跳槽,好好打好基本功,迎接之后的量质转换!

/ 03 /

高薪资都存在哪些高大上的行业?

数据声明:在拉勾网上发布职位的公司一般都会贴上两个以上的标签,本文将对这些标签重复计算。例如宜信公司标签是<移动互联网·金融>,则在这两个领域分别会计数。图中移动互联网的绝对值非常高,说明移动互联网是一种主流的趋势。

移动互联网11-25K主流:移动互联网的主流薪资认可是11-25K范围,且能够容纳的人员数量非常多,说明该行业不差钱。数据服务是这行里面的默默无闻的耕耘者,有很多新兴企业,提供数据服务,也是通过高新来吸引人才。电商、O2O、文化(主要是视频)、广告、金融几个行业对数据挖掘人才需求的数量和质量相差无几。如果希望从事一份体面的数据挖掘工作,可以考虑从这些行业中来找。

/ 04 /

何种融资阶段公司会需要数据分析?

AB轮找11-15K,20K到处缺:融到钱的公司(途径包括各种轮和上市)对于数据挖掘的需求明显高于其他,早在天使轮就有体现。就成功融资的这些企业来讲,11-15K的人在AB轮时达到顶峰,说明这阶段应该是数据挖掘部门急剧膨胀的阶段,需要比较多的初级数据挖掘人员;21-25K的人员在ABCD和上市之后的需求保持持平,说明对于有能力的资深人士,需求是一直存在的,而且可能满足要求的人员较少,公司之间的流动性比较高,招聘需求一直稳定存在。

融资程度与工资正相关:平均收入是根据人数加权得出,从中可以看出,“成功融资”、“未融资”、“不需要融资”呈依次递减的水平,在融资领域内,平均收入水平依据成熟度而显示逐步上升。

期权还是现金:如果你是希望通过跳槽来获取更高的收入11-20K,不考虑期权的因素下,成熟度高的已成功融资、如CD轮或者上市的公司是最理想的选择,这些公司总体平均收入比较高,未来有进一步上升的潜力;如果觉得竞争太激烈,可以退而求其次,将目标放在AB轮,这些公司对此档人员的需求最高,但平均收入不一定高。(但事情一体两面,如果你选择时机得当,AB轮获得股权期权,将来成功套现,也将是一笔不小的收入)

/ 05 /

何种规模企业需要数据分析?

500人规模对应15K分析师:对于11-15K的等级,在企业发展阶段呈现先上升后下降的趋势,其中150-500人是需求的顶峰;对于16-25K的人员,企业发展阶段是持续上升的需求,其中在50-500人阶段呈现出一个小高峰。可以理解企业在发展到150-500人之前,15K以下的数据挖掘即可满足需要,但在之后数据量的膨胀导致数据的价值陡增,对于21K以上的中高级人才产生巨大的渴求。

大公司易发挥分析价值:从人员加权平均收入来看,随着规模的增长是在不断上升的,企业的发展越大,数据挖掘越容易产生价值。如果你热衷于数据分析领域创造价值,大公司将是不错的历练平台;但如果可以接受11-15K水平的初级人员,150-500人的公司将会是一个不错的跳板。

/ 06 /

数据分析工具与收入之间的关系?

从每个网页中抓取JD说明,根据python中jieba库进行文本分词,并计算出现频次,并建立自己的分词标签字典。

词频占比=该词词频/所有词词频。平均每个JD中出现次数=词频/JD数。

在JD中,非关系型数据库、脚本语言和关系型数据库是三种主要被提及的工具,平均每个job中均会提及一次以上。说明这些是必备技能。具体取了排名前30的原始词做成云图如下。

以Hadoop为代表的关系型数据库,以python和java为代表的语言,以SQL为代表的关系型数据库构成工具的主流。

数据说明:面积图为对应词出现的频次总数,折线图为词频/job数量的比例、代表平均每个职位描述中出现某词的频次。

25K是工具和软技能分割点:从折线图上看,在6-15K、16-25K、26-100K三个阶段内,绝大多数工具需求都呈现正三角形的结构,即“小大小”的情况,可以理解为在25K以前,薪资随着工具的提升而不断提升,26K以后需要有其他非软件工具技能来获得职业生涯的突破。

从工作数量上看,hadoop、python、java的数值很高,说明获得绝大多数公司的认可,所以这三门工具是在数据挖掘领域走向人生巅峰的必备良药。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 互联网
    +关注

    关注

    55

    文章

    11321

    浏览量

    108875
  • 数据分析
    +关注

    关注

    2

    文章

    1508

    浏览量

    35945

原文标题:从拉勾网看数据分析师怎么变得值钱?

文章出处:【微信号:AI_shequ,微信公众号:人工智能爱好者社区】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    经营数据分析可以通过哪些方式

    系统的、科学的、符合商业规律的数据分析知识。这些数据分析都要基于数据质量,所以通常我们还会需要有个数据质量管理的相关体系来配合。  经营
    的头像 发表于 12-05 16:31 370次阅读

    学习物联网可以做什么工作?

    嵌入式软件和硬件,支持物联网设备的功能实现。   数据分析师:负责从物联网设备和传感器中获取和分析数据,并提供数据支持和决策。   物联网产品经理:负责物联网产品的策划、设计、实施、推
    发表于 10-11 16:40

    【产品介绍】Altair RapidMiner数据分析与人工智能平台

    AltairRapidMiner赋能组织解锁数据洞察,运用数据分析和先进的人工智能自动化,提供可扩展的面向未来的解决方案。Altair数据分析和人工智能平台包括数据准备、
    的头像 发表于 09-18 17:56 655次阅读
    【产品介绍】Altair RapidMiner<b class='flag-5'>数据分析</b>与人工智能平台

    如何通过数据分析识别设备故障模式?

    通过数据分析识别设备故障模式,本质是从声振温等多维数据中提取故障特征,建立 “数据特征 - 故障类型” 的映射关系,核心可通过特征提取、模式匹配、趋势分析三步实现,精准定位故障根源与发
    的头像 发表于 08-19 11:14 546次阅读
    如何通过<b class='flag-5'>数据分析</b>识别设备故障模式?

    构建自定义电商数据分析API

      在电商业务中,数据是驱动决策的核心。随着数据量的增长,企业需要实时、灵活的分析工具来监控销售、用户行为和库存等指标。一个自定义电商数据分析API(应用程序接口)可以自动化
    的头像 发表于 07-17 14:44 406次阅读
    构建自定义电商<b class='flag-5'>数据分析</b>API

    AI数据分析仪设计原理图:RapidIO信号接入 平板AI数据分析

    AI数据分析仪, 平板数据分析仪, 数据分析仪, AI边缘计算, 高带宽数据输入
    的头像 发表于 07-17 09:20 502次阅读
    AI<b class='flag-5'>数据分析</b>仪设计原理图:RapidIO信号接入 平板AI<b class='flag-5'>数据分析</b>仪

    如何使用协议分析仪进行数据分析与可视化

    使用协议分析仪进行数据分析与可视化,需结合数据捕获、协议解码、统计分析及可视化工具,将原始数据转化为可解读的图表和报告。以下是详细步骤及关键
    发表于 07-16 14:16

    从清华大学到镓未来科技,张大江先生在半导体功率器件十八年的坚守!

    与定义,他在半导体功率器件领域坚守了18年,也积累丰富实战经验。工作角色转变后,张大江开始更加注重以客户需求为导向,从市场角度思考问题。想要在市场中脱颖而出,做好品牌宣传是很关键的一步。在张大江的布局下
    发表于 05-19 10:16

    嵌入式去哪个城市好?

    对于嵌入式技术从业者来说,选择哪个城市发展是一个重要的决策。以下是一些建议: 一线城市 北京作为中国的首都和科技中心,北京拥有众多顶尖的高校和研究机构,以及大量的高科技企业,为嵌入式开发和应用提供了
    发表于 04-02 10:12

    PoE交换机如何助力智慧城市基础设施建设?

    的网络基础架构,能够承载大量数据并维持稳定连接。传统的网络解决方案在智慧城市部署中往往面临扩展性不足、可靠性欠佳和电源管理复杂等挑战,难以满足智慧城市对网络的严苛需求。 什么是以太
    发表于 03-25 10:20

    电力系统数据分析技术

    随着智能电网技术的发展和大数据时代的到来,电力系统数据分析技术已成为电力行业不可或缺的一部分。这些技术能够帮助电力公司更好地理解电网的运行状态,预测电力需求,优化电力资源分配,提高电网的稳定性
    的头像 发表于 01-18 09:46 1236次阅读

    智能焊接数据分析设备提升工业效率与精度

    随着科技的不断进步,智能制造已经成为推动工业4.0发展的关键力量。在众多的智能制造技术中,智能焊接数据分析设备因其在提高生产效率和焊接质量方面的显著效果而受到广泛关注。本文将探讨智能焊接数据分析设备
    的头像 发表于 01-15 14:11 677次阅读

    智能焊接数据分析设备提升制造精度与效率

    不稳定、生产效率低等问题。而智能焊接数据分析设备的应用,则为解决这些问题提供了新的思路和技术手段。本文将探讨智能焊接数据分析设备如何通过数据采集、分析及应用,提升焊接制?
    的头像 发表于 01-14 09:36 770次阅读

    ADC12D1800RF使用DESCLKIQ模式采样数据分析时二次谐波大,有什么方法可以改善?

    请问利用ADC12D1800RF参考电路设计,对比于数据手册,使用DESCLKIQ模式采样数据分析时二次谐波大,有什么方法可以改善?
    发表于 01-02 07:14

    Mathematica 在数据分析中的应用

    数据分析是现代科学研究和商业决策中不可或缺的一部分。随着数据量的爆炸性增长,对数据分析工具的需求也在不断增加。Mathematica,作为一种强大的计算软件,以其独特的符号计算能力和广
    的头像 发表于 12-26 15:41 1089次阅读