0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

首创了掠入射结构光照明超分辨成像技术

IEEE电气电子工程师 来源:未知 作者:李倩 2018-10-31 10:53 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

10月25日,中国科学院生物物理研究所李栋课题组与美国霍华德休斯医学研究所博士Eric Betzig、Jennifer Lippincott-Schwartz合作在《细胞》(Cell)杂志发表研究论文“Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales”。该文首创了掠入射结构光照明超分辨成像技术(GI-SIM),可对细胞内的生理过程进行高速、长时程、超分辨率成像,利用该技术发现了多种细胞器间相互作用新行为。

GI-SIM可对活细胞以97纳米分辨率、266幅每秒的成像速度连续成像近万幅超分辨图像。与李栋先前开发的全内反射结构光照明超分辨成像技术(TIRF-SIM; Li et al.,Science, 2015)相比,GI-SIM的成像深度以及所产生的信号量都提高了10倍;与传统共聚焦或转盘共聚焦显微镜相比,GI-SIM可提供2倍更高的空间分辨率以及10倍更快的成像速度;与其它超分辨成像技术相比,在细胞尺寸的视场范围下,GI-SIM可提供~10倍更快的成像速度,以及10-100倍更长的成像时程。GI-SIM实现了对细胞内多种细胞器动态的最优化二维超分辨成像,这使得研究人员发现了多种细胞器互作新行为。例如:

(1)管状内质网的三种新型延伸方式。

内质网的网络结构的形成是由管状内质网的不断延伸和融合完成的。之前的研究工作指出,管状内质网的延伸方式存在滑行(Sliding)和微管聚合端共生长(pTAC)两种,该研究发现了微管解聚端牵引(dTAC)、搭便车(Hitchhiking)和微管非依赖(Budding)三种管状内质网延伸方式。

(2)线粒体与内质网的互作影响线粒体的分裂与融合。

线粒体的分裂与内质网关系密切,统计发现有大约85%的线粒体分裂事件发生在线粒体与内质网的接触位点(contact sites)。研究进一步发现约60%的线粒体融合事件发生在线粒体与内质网的接触位点,并且与内质网接触的线粒体融合事件通常快于那些没有与内质网接触的融合事件。

(3)多色GI-SIM成像发现溶酶体-内质网互作对调控溶酶体在细胞内的动态运输和分布起关键作用。

(4)过去的研究仅发现内质网可通过融合来改变其网络结构,该研究首次观测到处于运动状态的溶酶体可引起管状内质网的瞬时断裂。

(5)该研究首次在哺乳动物细胞中证实不同种细胞器间存在广泛的“搭便车”(Hitchhiking)互作现象,并观测到线粒体、内质网等细胞器的形态改变和迁移可通过搭载到其它正在运动的细胞器上实现,而无需其直接招募马达蛋白。

李栋课题组博士研究生郭玉婷和助理研究员李迪为并列第一作者,博士研究生张思微为第二作者。李栋和Eric Betzig、Jennifer Lippincott-Schwartz为共同通讯作者。中科院遗传与发育生物学研究所刘佳佳课题组、杜克大学Dan Kiehart课题组合作参与了该课题。

该课题得到中科院先导B类项目、国家自然科学基金、国家重点研发计划项目的资助。

文章链接:https://www.cell.com/cell/fulltext/S0092-8674(18)31308-4。

生物物理所等开发新型超分辨成像技术揭示细胞器互作新现象

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 成像技术
    +关注

    关注

    4

    文章

    306

    浏览量

    32164
  • 图像
    +关注

    关注

    2

    文章

    1096

    浏览量

    42187

原文标题:新型超分辨成像技术揭示细胞器互作新现象

文章出处:【微信号:IEEE_China,微信公众号:IEEE电气电子工程师】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    索尼FCB-CR8530分辨率变焦:无人机光电吊舱的“视觉增强引擎”

    组件,为复杂环境下的空中观测提供可靠的技术支撑。 分辨率变焦:突破光学极限的成像革新 传统光学变焦受限于镜头物理
    的头像 发表于 10-21 14:05 219次阅读

    高光谱成像照明源有哪些?

    高光谱成像(Hyperspectral Imaging)是一种结合光谱分析与成像技术的多维度数据采集方法,能够获取目标物体在连续窄波段范围内的光谱空间信息。 照明源 (光源)作为高光谱
    的头像 发表于 09-17 10:14 473次阅读
    高光谱<b class='flag-5'>成像</b>的<b class='flag-5'>照明</b>源有哪些?

    聚徽厂家工业液晶屏的高分辨成像技术揭秘

    在工业生产、智能控制、精密检测等领域,对信息的精准获取与清晰展示至关重要。聚徽厂家的工业液晶屏凭借卓越的高分辨成像技术,在众多品牌中脱颖而出,为各行业提供了清晰、细腻的视觉呈现。接下来,将深入探究聚徽工业液晶屏高
    的头像 发表于 07-11 18:08 633次阅读

    JCMsuite应用:孤立线栅

    入射S和P偏振平面波照亮。JCMsuite计算近场分布。下图显示了当波长为193nm时,平面波从衬底侧垂直入射结构内的近场强度 S偏振光照明的近场强度 P偏振
    发表于 05-30 08:48

    JCMsuite中对二维光栅的定义和仿真

    光栅是光衍射的周期性结构。它能把入射的光束衍射成几束向不同方向发散的光束。 二维光栅 二维光栅在两个水平方向上都具有周期性。存在两个晶格矢量因此当几何结构移位一个晶格矢量时, 下图显示
    发表于 05-19 08:53

    GLAD应用:体全息光栅模拟

    概述 自从伽伯1948年提出全息术后,光学全息术已经被广泛用于三维光学成像领域。体全息成像技术是采用体全息光栅作为成像元件对物体进行三维成像
    发表于 05-15 09:32

    VirutualLab Fusion应用:结构光照明的显微镜系统

    摘要 与阿贝理论预测的分辨率相比,用于荧光样品的结构照明显微镜系统可以将显微镜系统的分辨率提高2倍。 VirutualLab Fusion提供
    发表于 03-21 09:26

    X射线成像系统:Kirkpatrick-Baez镜和单光栅干涉仪

    来说明特殊的X射线成像原理。在本通讯中,我们展示两个X射线成像实验:(1)使用Kirkpatrick-Baez镜创建纳米级X射线成像点;(2)用单光栅干涉仪说明相衬X射线
    发表于 03-21 09:22

    VirtualLab Fusion应用:用于X射线束的掠入射聚焦镜

    摘要 掠入射反射光学在x射线束线中得到了广泛的应用,特别是在Kirkpatrick-Baez椭圆镜系统中 [A. Verhoeven, et al., Journal of Synchrotron
    发表于 03-21 09:17

    JCMSuite应用:光场通过六方晶胞的近场分析

    时,平面波从衬底侧垂直入射结构内的近场强度 S偏振光照明的场矢量 P偏振光照明的场矢量 后处理傅里叶变换计算透射衍射级次的振幅。
    发表于 03-07 08:49

    VirtualLab Fusion应用:透镜的设计与分析

    析,RCWA)提供非常高的精度。虽然计算可能需要一段时间,但对于像这样复杂的系统,高精度是绝对必要的。 连接建模技术:自由空间传播  构透镜(柱结构分析)  传播到焦点 
    发表于 03-04 10:05

    景深3D检测显微镜技术解析

    为一个完整的三维模型。这种技术不仅提升了成像的精度,还大大扩展显微镜的应用范围。 在材料科学领域,景深3D检测显微镜为研究人员提供观察
    发表于 02-25 10:51

    X射线掠入射聚焦反射镜

    摘要 掠入射反射光学元件在X射线光路中广泛使用,特别是Kirkpatrick-Baez(KB)椭圆反射镜系统。(A. Verhoeven, et al., Journal
    发表于 12-27 08:50

    如何提高透镜成像分辨

    透镜成像分辨率是指透镜系统能够分辨的最小细节的能力。提高透镜成像分辨率对于许多应用领域,如显微镜、望远镜、相机等,都是至关重要的。以下是一些
    的头像 发表于 12-25 16:54 1764次阅读

    新型分辨显微成像技术:突破光学衍射极限

    MLS-SIM应用于清醒小鼠皮层分辨成像 中科院脑科学与智能技术卓越创新中心王凯研究组在《自然·方法》(Nature Methods)上在线发表
    的头像 发表于 12-19 06:21 765次阅读
    新型<b class='flag-5'>超</b><b class='flag-5'>分辨</b>显微<b class='flag-5'>成像</b><b class='flag-5'>技术</b>:突破光学衍射极限