0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

采用模糊神经网络进行移动机器人沿墙导航控制分析

电子设计 来源:郭婷 作者:电子设计 2018-12-07 08:04 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

1.引言

对于沿墙导航控制问题的分析,在环境探测方面由于采用了波束角小,镜面反射影响小的PSD传感器,使所测量的环境信息可靠性提高。在导航控制方面综合考虑室内环境特点和机器人状态,设计了多模态的沿墙导航控制算法……实验结果表明:机器人在室内环境下能较好地沿墙行走,运动轨迹平滑。所提出的基于PSD的沿墙导航系统比基于声纳的系统具有更高的性能价格比。它可以看作是移动机器人智能的低层行为,当与其它高层的智能行为相结合时,可以完成复杂的任务。墙体情况可分为以下几种:

跟踪一个未知的墙体。当获得的环境信息太少或无法获得,机器人的轨迹可能会特定为“沿着右边的墙体运动直到发现第一个门口”。跟踪一个已知墙体。机器人按照规划好路径跟踪轨迹,为了使算法误差保持在小范围内而跟踪墙体。

目前关于移动机器人沿墙导航控制已有较多研究,大多采用声纳传感器作为环境的感知设备。由于模糊逻辑技术和神经网络技术各自独到的特点,将模糊技术和神经网络有机结合组成模糊神经网络控制系统,可实现模糊规则自动提取、模糊隶属函数的自动生成及在线调节。

2 模糊神经网络结构

2.1 输入输出值模糊化

本文研究的移动机器人沿墙导航控制融合机器人声纳检测采集到的数据,判断机器人的位姿,然后通过模糊神经网络算法控制移动机器人的动作,使其在一定距离内沿墙体运。针对在基于行为的移动机器人沿墙导航控制器的设计中缺乏足够的先验知识的问题,用模糊神经网络直接逼近连续状态和动作空间中的Q值函数。利用对Q值函数的优化获得控制输出。本文中移动机器人侧壁上方安装有16个声纳,按顺时针排列从0#到15#。

移动机器人要避免与墙体碰撞又要保持一定距离,所以本文为每个声纳设置一个阈值,当声纳检测到的距离值大于或小于这个阈值就采取相应的动作。这样,将声纳采集的距离值与各自相应的阈值相减得到差值△di(i=O,1,2,…,15)作为模糊神经网络的一个输入;移动机器人的角度信息θ作为另外一个输入。将距离差值△di和角度θ输入模糊化如下:

距离差值△di:较小(NB),小(NS),中(Z),大(PS),较大(PB)。

角度θ:左(L),偏左(LS),正(Z),偏右(RS),右(R)。

输出变量为移动机器人的左右轮速Vl、Vr,模糊化如下:

左右轮速Vl、Vr:左转(TL),前进(G),右转(TR)。

2.2 模糊神经网络结构图

模糊神经网络结构图如图1所示,A为输入层,输入变量分别是前面所说的距离差值△di(i=0,l,2,3,4)和角度θ。A层的作用是将输入值传送到下一层。

采用模糊神经网络进行移动机器人沿墙导航控制分析

B,C为模糊化层,即使用模糊语言来反应输入量的变化,隶属函数采用高斯函数,隶属度计算公式如下:

采用模糊神经网络进行移动机器人沿墙导航控制分析

连接权重We、Wd决定了隶属函数的形状。

D层为模糊推理层,目的是将输入量进行综合处理,共采用了25条规则,它们由C,D,E的连接表示出来。模糊规则如下:

lf △di is M andθis N,then Vl is K and Vris L.

其中M=NB,NS,Z,PS,PB;N=L,LS,Z,RS,R;K,L=TL,G,TR。

E、F、G层为去模糊化层。F层有10个神经元,5个对应移动机器人的左轮速度,5个对应右轮速度。F层的结果隶属函数使用三角形隶属函数,目的是把在E层模糊语言描述的隶属函数转化为具体数值的隶属度。G层求解模糊结果,采用重心法,也叫加权平均法。求解过程是以控制作用论域上的点vi(i=l,2,…,n)对控制作用模糊集的隶属度u为权系数进行加权平均而求得模糊结果。

采用模糊神经网络进行移动机器人沿墙导航控制分析

3 沿墙导航控制计算模型

图l所示即为本文采用的BP前馈型神经网络结构,计算模型如下(I为该神经元的输入值,O为输出值,上标表示神经元所在的层):

采用模糊神经网络进行移动机器人沿墙导航控制分析

D层:由输入变量自动生成模糊规则。

采用模糊神经网络进行移动机器人沿墙导航控制分析


F层:输出隶属函数使用三角形函数,隶属度计算公式如下:

采用模糊神经网络进行移动机器人沿墙导航控制分析

4 实验结果

为了验证算法的有效性,本文设计了移动机器人沿左墙行进的实验。移动机器人使用0#~4#声纳,图2为基于航迹推算法的移动机器人墙体跟踪轨迹图;图3为基于模糊神经网络的移动机器人沿墙导航控制轨迹图。

采用模糊神经网络进行移动机器人沿墙导航控制分析

图3中,移动机器人与墙体的距离联合各声纳相对于移动机器人正前方的角度作为模糊神经网络的输入,经过融和判断来控制移动机器人的动作,靠近墙体或远离墙体。例如,O#(-90°)测得的数值为208mm,1#(-50°)测得的数值为324mm,2#(一30°)测得的数值为877mm,3#(一10°)测得的数值为1700mm,4#(10°)测得的数值为3000mm,说明移动机器人距离墙体太近,需远离以避免碰撞,此时移动机器人左轮速度为0.20m/s,右轮速度为O.08m/s。移动机器人采用模糊神经网络进行沿墙导航控制的均方误差为0.0014。单一采用航迹推算法的均方误差为0.0382。由此可见,采用模糊神经网络进行移动机器人沿墙导航控制,性能大大提高。

5 结论

本文给出了模糊神经网络的计算模型,利用BP网络离线训练权值。此方法能够根据移动机器人声纳采集到的信息自动生成模糊隶属函数,并且自动提取模糊规则,增强了神经网络的泛化能力和容错能力。从实验中可以看到采用模糊神经网络进行移动机器人沿墙导航控制,性能大大提高。

实验证明了这种方法有着很大的可行性,在21世纪,可能机器人的地位会逐渐的走入到人们的视线,所以这实验的证明,有利于以后的社会发展和科技的进步。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人
    +关注

    关注

    213

    文章

    30581

    浏览量

    219585
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106797
  • 导航
    +关注

    关注

    7

    文章

    570

    浏览量

    43725
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    移动机器人技术的发展历程

    本白皮书聚焦于移动机器人领域的进展与挑战,重点探讨三个核心主题:机器人运动控制、复杂环境中的感知与导航,以及在适应新任务时的模块化与灵活性。此外,文中还重点介绍了
    的头像 发表于 09-29 16:46 2904次阅读

    恩智浦自主移动机器人设计要点

    长期以来,自动化机器人一直被视为科幻小说中的概念,而如今这一技术已成为现实,并正在大规模部署。在机器人技术领域,自主移动机器人 (AMR) 是发展最快的创新技术之一。
    的头像 发表于 09-03 15:01 3735次阅读
    恩智浦自主<b class='flag-5'>移动机器人</b>设计要点

    瑞芯微 RK3568/3588:为移动机器人注入智慧动力引擎

    移动机器人,正从科幻想象快步走入现实生活。它们依据应用场景与功能,主要分为三大类: 工业移动机器人: 如AGV(自动导引车)、AMR(自主移动机器人),专注于物流搬运与产线协同,提升效率与柔性
    的头像 发表于 06-17 16:51 814次阅读

    寻迹智行第三代自研移动机器人控制器获欧盟CE认证

    寻迹智行第三代自研移动机器人控制器BR-300G获欧盟CE认证
    的头像 发表于 06-12 13:47 411次阅读
    寻迹智行第三代自研<b class='flag-5'>移动机器人</b><b class='flag-5'>控制</b>器获欧盟CE认证

    轮式移动机器人电机驱动系统的研究与开发

    【摘 要】以嵌入式运动控制体系为基础,以移动机器人为研究对象,结合三轮结构轮式移动机器人,对二轮差速驱动转向自主移动机器人运动学和动力学空间模型进行
    发表于 06-11 14:30

    移动机器人电机控制DEMO (原理图+BOM+PCB)

    英飞凌移动机器人电机控制演示板可为采用英飞凌元器件的自主服务机器人功能提供演示平台。这些板可以组合起来创建此平台。DEMO_IMR_MTRCTRL_V1是一种高效、小巧的解决方案,用于
    的头像 发表于 05-20 09:37 2064次阅读
    <b class='flag-5'>移动机器人</b>电机<b class='flag-5'>控制</b>DEMO (原理图+BOM+PCB)

    安森美在自主移动机器人领域的发展成果

    在4月初落幕的“OFweek 2025(第十四届)中国机器人产业大会”上,安森美(onsemi)AMG战略业务拓展高级经理Henry Yang发表“从芯片到应用:安森美自主移动机器人(AMR)技术方案剖析”主题演讲,为与会观众介绍安森美在AMR领域的发展成果。
    的头像 发表于 04-24 10:01 923次阅读

    移动机器人电机控制DEMO(原理图+BOM+PCB)

    英飞凌移动机器人电机控制演示板可为采用英飞凌元器件的自主服务机器人功能提供演示平台。这些板可以组合起来创建此平台。DEMO_IMR_MTRCTRL_V1是一种高效、小巧的解决方案,用于
    的头像 发表于 04-11 18:33 1309次阅读
    <b class='flag-5'>移动机器人</b>电机<b class='flag-5'>控制</b>DEMO(原理图+BOM+PCB)

    惯性测量单元传感器在自主移动机器人的应用

    使机器人能够在动态变化的环境中导航。本文将为您介绍IMU的功能特性,与在自主移动机器人(AMR)的应用,以及ADI所提供的相关解决方案。
    的头像 发表于 02-27 10:04 1676次阅读
    惯性测量单元传感器在自主<b class='flag-5'>移动机器人</b>的应用

    2024移动机器人市场风云:新玩家批量涌现,是挑战还是机遇

    新玩家,新玩法? 文|新战略在科技飞速发展的当下,移动机器人领域正经历着一场变革。2024 年,这个市场又迎来了一批新玩家,他们的加入,让原本就充满活力的移动机器人市场变得更加热闹非凡,同时也预示着
    的头像 发表于 02-07 10:50 780次阅读

    无轨激光AGV移动机器人如何构建地图?

    ,使AGV的灵活性和柔性发挥到最大。无轨激光AGV移动机器人定位是实现自主导航的关键,无轨激光AGV通过各种传感器件感知周围环境,获取自身位置信息,从而自主进行规划、调整运行路径。 AGV物流 随着科技的飞速发展,AGV
    的头像 发表于 01-10 10:00 814次阅读
    无轨激光AGV<b class='flag-5'>移动机器人</b>如何构建地图?

    移动机器人核心科技解码:导航、感知与掌控力的深度剖析

    富唯智能移动机器人的核心技术主要包括导航、感知与控制。这些技术共同决定了移动机器人在不同环境中的自主行动能力和工作效率。
    的头像 发表于 01-02 16:01 810次阅读

    欧姆龙LD-90移动机器人的应用案例

    在制药领域不懈开拓创新的生物技术公司HIPRA引入欧姆龙提供的移动机器人车队,革新其内部物流流程。
    的头像 发表于 12-17 15:41 1112次阅读

    思岚科技荣获双年度移动机器人优质供应链奖

    移动机器人(AGV/AMR)产业联盟、人形机器人场景应用联盟主办的“2024中国移动机器人(AGV/AMR)产业发展年会”于12月13日在江苏苏州圆满落幕!
    的头像 发表于 12-16 17:54 1284次阅读

    移动机器人的技术突破和未来展望

    移动机器人已经成为现代社会不可或缺的一部分,在各个领域发挥着越来越重要的作用。在这个过程中,富唯智能机器人以其卓越的技术突破,引领着移动机器人领域的发展潮流。
    的头像 发表于 12-13 17:57 926次阅读
    <b class='flag-5'>移动机器人</b>的技术突破和未来展望