【博主简介】本人“爱在七夕时”,系一名半导体行业质量管理从业者,旨在业余时间不定期的分享半导体行业中的:产品质量、失效分析、可靠性分析和产品基础应用等相关知识。常言:真知不问出处,所分享的内容如有雷同或是不当之处,还请大家海涵。当前在各网络平台上均以此昵称为ID跟大家一起交流学习!

功率半导体在电力电子系统中占据核心的地位。经过几十年的发展,硅(Si)半导体已经接近理论性能极限,无法满足越来越高的变换器性能要求。自21世纪以来,以碳化硅(Sic)为主的宽禁带半导体受到越来越多的关注。碳化硅的禁带宽度约为硅基材料的3倍,临界击穿场强约为硅基材料的10倍,热导率约是硅基材料的3倍,电子饱和漂移速率约是硅基材料的2倍。而同等耐压下的漂移区电阻理论上可以降低到硅的1/300,在保证“高耐压”能力的同时,实现“低导通电阻”“高开关速度”以及“高开关频率”的特性。另外,碳化硅材料的带隙宽度是硅的3倍,因此,碳化硅功率半导体芯片在高温条件下也可以稳定工作。

功率芯片通过封装实现与外部电路的连接,其性能的发挥则依赖着封装的支持,在大功率场合下通常功率芯片会被封装为功率模块进行使用。传统的功率模块封装截面如下图所示。其封装方式足以满足硅半导体的特性需求,但在将其应用于碳化硅半导体时,则会遇到一些挑战,限制了碳化硅半导体优异特性的发挥。

碳化硅器件的这些优良特性,需要通过封装与电路系统实现功率和信号的高效、高可靠连接,才能得到完美展现,而现有的传统封装技术应用于碳化硅器件时面临着一些关键挑战。
碳化硅器件的结电容更小,栅极电荷低,因此,开关速度极快,开关过程中的 dv/dt 和 di/dt 均极高。虽然器件开关损耗显著降低,但传统封装中杂散电感参数较大,在极高的 di/dt 下会产生更大的电压过冲以及振荡,引起器件电压应力、损耗的增加以及电磁干扰问题。在相同杂散电容情况下,更高的dv/dt 也会增加共模电流。本期主要跟大家分享的是:先进碳化硅(Sic)功率半导体封装相关的内容,希望有兴趣的朋友可以加入一起交流学习,有遗漏或是不足之处,请海涵哦:

























因为本PPT章节太多,剩下部分如有朋友有需要,可私信我邀请您加入我“知识星球”免费下载PDF版本。注意:此资料只可供自己学习,不可传阅,平台有下载记录,切记!欢迎加入后一起交流学习。
当前,在全球汽车电动化的浪潮下,汽车半导体领域的功率电子器件作为汽车电动化的核心部件,成为了车企和电机控制器Tire 1企业关注的热点。车用功率模块已从硅基IGBT为主的时代,开始逐步进入以碳化硅MOSFET为核心的发展阶段。
电动汽车行业发展至今,行业最关心的是续航里程。影响续航里程的因素有很多,包括电池容量、车身重量、电力系统的电能转化效率等。功率半导体是电能转换的核心,碳化硅功率器件比硅基器件有低导通损耗、高开关频率和高工作耐压等优势,能获得更高的系统电能转换效率,且在使得同等电量情况下,比使用硅基功率器件获得更多的续航里程。因此电动汽车对于碳化硅功率器件的应用需求日益凸显。在电动汽车中,碳化硅功率器件的应用主要为两个方向,一个用于电机驱动逆变器(电机控制器),另一个用于车载电源系统,主要包括:电源转换系统(车载DC/DC)、车载充电系统(OBC)、车载空调系统(PTC和空压机)等方面。

电动汽车整车系统中,动力电池的成本占比最高,约占整车成本的4-5成,在成本一定且电池技术路线确定的情况下,直接通过增加电池容量来提升续航里程的思路难以实现,在保证电池容量及技术路线不变的前提下,如何通过其他方法提升电能的转化效率,降低电能损耗,实现续航里程的提升,一直是行业在探索的问题。根据目前已知的行业数据,在电机控制器中用碳化硅MOS替换硅基IGBT后,会获得电机控制器的效率的提升,NEDC工况下,对电池续航的贡献提升在3%-8%之间,所以电控应用对碳化硅器件的需求最为迫切。同时,在国内新能源汽车市场大力推进适应高压快充技术的高压平台上,硅基IGBT应对起来就非常吃力,取而代之的是碳化硅MOS。这更加确定了碳化硅功率器件在下一代电控系统中的核心和不可替代性地位。近年来多家车企已开始全面采用碳化硅功率模块,特斯拉的Model 3和Model Y、比亚迪的汉、蔚来的ET5和ET7、小鹏的G9和G6等车型相继量产碳化硅电机控制器,整车的续航里程与加速性能都得到了显著的提升。

碳化硅肖特基二极管、SiC MOSFET 器件则主要应用于车载OBC、DC/DC、空调系统,主要影响充电效率和辅助系统用电效率、开关频率等。◎车载充电机(OBC)为电动汽车的高压直流电池组提供了从基础设施电网充电的关键功能,并决定了充电功率和效率的关键部件。电网中的交流电转换为直流电对电池进行充电, 碳化硅二极管及MOSFET器件则可用于车载充电机PFC和DC-DC次级整流环节,推动车载充电机向双向充放电、集成化、智能化、小型化、轻量化、高效率化等方向发展。◎电源转换系统DC/DC 是转变输入电压并有效输出固定电压的电压转换器,实现车内高压电池和低压电瓶之间的功率转换,主要给车内低压用电器供电,如动力转向、水泵、车灯等。
随着整车智能化、电气化的发展,对DCDC的供电功率及安全性提出了更高的要求。◎车载空调系统中,在高压平台车型,因为快速充电所带来的电池包的热集聚,需要快速释放。当前的技术是采用车载空调系统为电池包散热,因此对于空压机和PTC的频率以及功率都有大幅提升的要求。而传统的硅基IGBT和MOS器件已无法满足,采用碳化硅MOS器件已势不可挡。当前,全球碳化硅产业格局呈现美、欧、日三足鼎立态势,碳化硅材料七成以上来自美国公司,欧洲拥有完整的碳化硅衬底、外延、器件以及应用产业链,日本则在碳化硅芯片、模块和应用开发方面占据领先优势。中国目前已具备完整的碳化硅产业链,在材料制备和封测应用等部分环节具有国际竞争力。

碳化硅(silicon carbide,SiC)功率器件作为一种宽禁带器件,具有耐高压、高温,导通电阻低,开关速度快等优点。如何充分发挥碳化硅器件的这些优势性能则给封装技术带来了新的挑战:传统封装杂散电感参数较大,难以匹配器件的快速开关特性;器件高温工作时,封装可靠性降低;以及模块的多功能集成封装与高功率密度需求等。针对上述挑战,本文分析传统封装结构中杂散电感参数大的根本原因,并对国内外的现有低寄生电感封装方式进行分类对比;罗列比较现有提高封装高温可靠性的材料和制作工艺,如芯片连接材料与技术;最后,讨论现有多功能集成封装方法,介绍多种先进散热方法。在前面综述的基础上,结合电力电子的发展趋势,对 SiC 器件封装技术进行归纳和展望。近20多年来,碳化硅(Silicon Carbide,SiC)作为一种宽禁带功率器件,受到人们越来越多的关注。
与硅相比,碳化硅具有很多优点,如:碳化硅的禁带宽度更大,这使碳化硅器件拥有更低的漏电流及更高的工作温度,抗辐照能力得到提升;碳化硅材料击穿电场是硅的 10 倍,因此,其器件可设计更高的掺杂浓度及更薄的外延厚度,与相同电压等级的硅功率器件相比,导通电阻更低;碳化硅具有高电子饱和速度的特性,使器件可工作在更高的开关频率;同时,碳化硅材料更高的热导率也有助于提升系统的整体功率密度。碳化硅器件的高频、高压、耐高温、开关速度快、损耗低等特性,使电力电子系统的效率和功率密度朝着更高的方向前进。碳化硅器件的这些优良特性,需要通过封装与电路系统实现功率和信号的高效、高可靠连接,才能得到完美展现,而现有的传统封装技术应用于碳化硅器件时面临着一些关键挑战。碳化硅器件的结电容更小,栅极电荷低,因此,开关速度极快,开关过程中的 dv/dt 和 di/dt 均极高。虽然器件开关损耗显著降低,但传统封装中杂散电感参数较大,在极高的 di/dt 下会产生更大的电压过冲以及振荡,引起器件电压应力、损耗的增加以及电磁干扰问题。在相同杂散电容情况下,更高的dv/dt 也会增加共模电流。针对上述问题,国内外学者们研究开发了一系列新的封装结构,用于减小杂散参数,特别是降低杂散电感。
写在最后面的话
碳化硅(Sic)功率器件已经被认为是下一代功率电子应用的关键技术,其封装技术同样重要。从高温稳定性到模块集成,再到环境因子和测试验证,封装技术的研究和发展正与碳化硅(Sic)器件技术并行进展。随着两者的进一步完善,我们期待碳化硅(Sic)功率器件在未来功率电子应用中发挥更大的作用。

免责声明
【我们尊重原创,也注重分享。文中的文字、图片版权归原作者所有,转载目的在于分享更多信息,不代表本号立场,如有侵犯您的权益请及时私信联系,我们将第一时间跟踪核实并作处理,谢谢!】
审核编辑 黄宇
-
封装
+关注
关注
128文章
9149浏览量
147917 -
SiC
+关注
关注
32文章
3529浏览量
68240 -
碳化硅
+关注
关注
25文章
3327浏览量
51738
发布评论请先 登录
半导体碳化硅(Sic)模块并联驱动振荡抑制方法的详解;
半导体“化学气相沉积(CVD)碳化硅(Sic)”工艺技术详解;
基本股份SiC功率模块的两电平全碳化硅混合逆变器解决方案
热泵与空调全面跨入SiC碳化硅功率半导体时代:能效革命与产业升级
基本半导体碳化硅(SiC)MOSFET低关断损耗(Eoff)特性的应用优势

关于先进碳化硅(Sic)功率半导体封装工艺技术的详解;
评论