0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能如何才能持续发展?

mK5P_AItists 来源:未知 作者:胡薇 2018-08-02 15:16 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

人工智能的主流技术的发展大致经历了三个重要的历程。1956-1965年,人工智能的形成期,强调推理的作用。一般认为只要机器被赋予逻辑推理能力就可以实现人工智能。不过此后人们发现,只是具备了逻辑推理能力,机器还远远达不到智能化的水平。1965-1990年,人工智能的“知识期”。这一时期,人们认为要让机器变得有智能,就应该设法让机器具有知识。

后来人们发现,知识获取相当困难。1990年至今,人工智能进入“机器学习期”。随着各种机器学习算法的提出和应用,特别是深度学习技术的发展,人们希望机器能够通过大量数据分析,从而自动学习出知识并实现智能化水平。这一时期,随着计算机硬件水平的提升,大数据分析技术的发展,机器采集、存储、处理数据的水平有了大幅提高。特别是深度学习技术对知识的理解比之前浅层学习有了很大的进步,Alpha Go和中韩围棋高手过招大幅领先就是人工智能的高水平代表之一。

人工智能发展的62年中,有高潮,有低潮,呈现波浪式前进,螺旋式提升。1960年代,人工智能大发展,1970年代,人工智能处于低潮,特别是神经网路、机器翻译等的研究项目大量取消。1980年代,人工智能发展迎来了“日本五代机”大好时光。但是到1988年,“日本五代机”研究没有达到预期的目标,引起人们反思人工智能的研究。1991年,人工智能顶级刊物“Artificial Intelligence”第47卷发表了人工智能基础专辑,指出了人工智能研究的趋势。Kirsh在专辑中提出了人工智能的五个基本问题:

(1)知识与概念化是否是人工智能的核心?

(2)认知能力能否与载体分开来研究?

(3)认知的轨迹是否可用类自然语言来描述?

(4)学习能力能否与认知分开来研究?

(5)所有的认知是否有一种统一的结构?

这些问题都是与人工智能有关的认知问题,必须从认知科学的基础理论进行探讨。基础理论研究是为获得关于现象和可观察事实的基本原理及新知识而进行的实验性和理论性工作,它不以任何专门或特定的应用或使用为目的。

在过去的几年间,由于神经网络,或者“深度学习”方法的飞速发,人工智能已经发生了一场变革,这些人工智能方法的起源都直接来自神经科学。1943年,心理学家麦克洛奇(W S McCulloch) 和数理逻辑学家皮兹 (W Pitts) 在《数学生物物理公报 (Bulletin ofMathematical Biophysics)》上发表了关于神经网络的数学模型,提出了MP神经网络模型,开创了人工神经网络的研究。

神经计算的研究以建设人工的神经网络作为开端,这些神经网络能计算逻辑函数。不久之后,有人提出了另外的一些机制,认为神经网络中的神经元可能可以逐步地从监督式的回馈或者非监督方法中有效的编码环境统计下进行学习。这些机制打开了人工神经网络研究的另一扇大门,并且提供了当代对深度学习进行研究的基础。费尔德曼(Feldmann) 和 巴拉德(Ballard) 的连接网络模型指出了传统的人工智能计算与生物的“计算"的区别, 提出了并行分布处理的计算原则。

1985年,欣顿(Hinton)和塞杰诺斯基(Sejnowsky) 提出了一个可行的算法,称为玻耳兹曼(Boltzmann) 机模型。他们借用了统计物理学的概念和方法,首次提出了多层网络的学习算法。1986年,鲁梅尔哈特(Rumelhart) 和 麦克莱伦德(McClelland) 等人提出并行分布处理(Parallel Distributed Processing, 简称PDP) 的理论。一群神经科学和认知科学家意识到,他们的研究属于平行分布式处理(PDP)。

当时,大多数的人工智能研究都集中在基于序列计算建立逻辑处理系统,这一概念部分是受到这样一种思路的启发——人类的智能包含了对符号表征的处理。但是,在有一些领域,越来越多的人意识到,纯粹的符号方法可能过于脆弱,并且在解决人类习以为常的现实问题时,可能不够灵活。取而代之的是,关于大脑基础知识的不断增加,指出了一个非常不一样的方向,强调动态和高度平行信息处理的重要性。基于此,PDP兴起提出了一个思路:人类的认知和行为来自动态的、分布式交互,并且基于神经网络内单一类神经元的处理单元,通过学习进程来对交互进行调整,他们通过调整参数,以将误差最小化,将反馈最大化。在各个地方,神经科学为架构和算法的范围提供了初步指导,从而引导人工智能成功应用神经网络。

除了在深度学习发展中的神经科学发挥重要作用之外,神经科学还推动了强化学习(RL)的出现。强化学习方法解决了如何通过将环境中的状态映射到行动来最大化未来奖励的问题,并且是人工智能研究中使用最广泛的工具之一。深度 Q 网络(DQN)通过学习将图像像素的矢量转换为用于选择动作(例如操纵杆移动)的策略,在 Atari 2600 视频游戏中展现出专家级的水平。DQN 的一个关键因素是“体验重播”(experience replay),其中网络以基于实例的方式存储训练数据的一部分,然后“离线重播”,从过去新发现的成功或失败中学习。体验重播对于最大限度地提高数据效率至关重要,避免了从连续相关经验中学习的不稳定的影响,使网络即使在复杂、高度结构化的顺序环境中,也能学习可行的价值函数。

体验重播直接受理论的启发,这些理论旨在了解哺乳动物大脑中的多个记忆系统如何相互作用。动物的学习行为是由海马和新皮质中互补学习系统为基础。DQN 中的重播缓冲区可以被视为一个非常原始的海马,使计算机能够进行辅助学习,就像在生物大脑里发生的那样。后续工作表明,当具有高度奖励价值的事件重播被优先考虑时,DQN 中体验重播的好处得到了增长,正如海马重播似乎更偏好能够带来高水平强化的事件一样。

存储在内存缓冲区中的体验不仅可以用于逐渐将深度网络的参数调整为最佳策略(就像在 DQN 中那样),还可以根据个人经验支持快速的行为变化。事实上,理论神经科学已经证明了情景控制的潜在好处,在生物大脑的海马中,奖励动作序列能够在内部从快速可更新的记忆库中被重新激活。此外,当获得的环境经验有限时,情景控制特别优于其他的学习机制。最近的人工智能 研究已经吸取了这些想法来克服深度强化学习网络学习慢的特性,开发了实现情景控制的架构。这些网络存储特定的体验,并且基于当前情况输入和存储在存储器中的先前事件之间的相似性来选择新的动作,考虑与之前的事件相关联的奖励。

智能科学是由脑科学、认知科学、人工智能等构建的前沿交叉学科,研究智能的基本理论和实现技术。脑科学从分子水平、细胞水平、行为水平研究人脑智能机理,建立脑模型,揭示人脑的本质。认知科学是研究人类感知、学习、记忆、思维、意识等人脑心智活动过程的科学。人工智能研究用人工的方法和技术,模仿、延伸和扩展人的智能, 实现机器智能。智能科学是实现人类水平的人工智能的重要途径,引领新一代人工智能的发展。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1813

    文章

    49793

    浏览量

    262011
  • 机器学习
    +关注

    关注

    66

    文章

    8542

    浏览量

    136320

原文标题:基础理论研究是人工智能持续发展的保证

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    达实智能荣获2025年上市公司可持续发展优秀实践案例

    近日,中国上市公司协会公布了2025年上市公司可持续发展优秀实践案例名单,达实智能凭借碳普惠创新实践案例,再次入选2025年上市公司ESG实践案例。
    的头像 发表于 11-28 10:22 279次阅读

    挖到宝了!人工智能综合实验箱,高校新工科的宝藏神器

    家人们,最近在研究人工智能相关设备,挖到了一款超厉害的宝藏——比邻星人工智能综合实验箱,必须来给大伙分享分享!可☎(壹捌伍 柒零零玖 壹壹捌陆) 一、开箱即学,便捷拉满 这个实验箱真的是为使用者
    发表于 08-07 14:30

    挖到宝了!比邻星人工智能综合实验箱,高校新工科的宝藏神器!

    家人们,最近在研究人工智能相关设备,挖到了一款超厉害的宝藏——比邻星人工智能综合实验箱,必须来给大伙分享分享!可☎(壹捌伍 柒零零玖 壹壹捌陆) 一、开箱即学,便捷拉满 这个实验箱真的是为使用者
    发表于 08-07 14:23

    最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)

    人工智能大模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的智能工具,大模
    发表于 07-04 11:10

    博世持续引领人工智能的应用与开发

    博世持续引领人工智能(AI)的应用与开发:到2027年底将投入超过25亿欧元。人工智能正推动博世产品与服务的创新及增长,它使得自动驾驶更安全,让制造质量更可靠,让消费者在日常工作、休闲和居家场景中获得更多便利。
    的头像 发表于 06-27 11:02 825次阅读

    AI技术助力可持续发展

    随着人工智能 (AI) 持续为行业和社会带来变革,如何平衡其快速增长与环境责任的紧迫性已成为关键考量。诚然 AI 会致使巨大的能源需求,但它也可以成为应对更广泛的可持续发展挑战的工具。因此,为了善用
    的头像 发表于 06-19 10:43 1065次阅读

    人工智能如何促进可持续发展

    城镇化和数字化转型的推动下,全球电力需求持续飙升,我们对化石燃料的依赖仍然是气候变化的主要因素。当今世界有80多亿人,他们都需要获得负担得起、可持续且安全的能源。预计到2050年,全球能源需求将增长11%至18%,满足这一需求需要能源行业价值链各个环节的创新。
    的头像 发表于 06-14 14:01 934次阅读

    CES Asia 2025 聚焦:未来消费电子市场的交互变革与可持续发展#人工智能

    人工智能
    jf_19270381
    发布于 :2025年05月19日 15:01:33

    CES Asia 2025 聚焦:未来消费电子市场的交互变革与可持续发展 # 人工智能

    人工智能
    jf_19270381
    发布于 :2025年05月19日 15:00:28

    商汤科技发布2024年可持续发展报告

    在当今全球科技革命的浪潮中,人工智能正成为推动社会进步和经济发展的核心力量,全社会对于可持续发展的关注也达到了前所未有的高度。
    的头像 发表于 05-07 11:26 926次阅读

    人工智能对智慧园区的提升和帮助

    ,进一步提升了智慧园区的运营效率、安全性和用户体验,为园区的可持续发展提供了强有力的支持。以下是人工智能对智慧园区的提升和帮助的具体体现。 1.提升运营效率 人工智能通过自动化技术和智能
    的头像 发表于 03-13 14:39 783次阅读

    安科瑞:以综合能效管理解决方案,赋能人工智能时代的数据中心可持续发展

    人工智能与可持续发展的双重浪潮下,安科瑞凭借其综合能效管理解决方案,不仅为数据中心行业提供了降本增效的实践路径,更推动了全球数字基础设施向绿色低碳转型。未来,随着技术的持续迭代与生态合作的深化,安科瑞有望成为AI时代数据中心能
    的头像 发表于 02-21 15:37 838次阅读
    安科瑞:以综合能效管理解决方案,赋能<b class='flag-5'>人工智能</b>时代的数据中心可<b class='flag-5'>持续发展</b>

    软通动力蝉联CSO全球可持续发展论坛“首席可持续发展官”奖项

    近日,备受瞩目的2025CSO全球可持续发展论坛在深圳圆满落幕,同时揭晓了一年一度的“首席可持续发展官”评选结果。在此次评选中,软通动力凭借其在ESG(环境、社会和公司治理)领域的卓越实践和显著贡献
    的头像 发表于 01-24 15:40 848次阅读

    软通动力蝉联首席可持续发展

    近日,2025CSO全球可持续发展论坛在深圳成功举行,一年一度的“首席可持续发展官”评选结果重磅发布。软通动力凭借在ESG(环境、社会和公司治理)方面的卓越表现和突出贡献,从众多参选企业中脱颖而出再获殊荣,实现蝉联。
    的头像 发表于 01-24 09:39 874次阅读

    TE再次入选道琼斯可持续发展指数

    全球行业技术领先企业TE Connectivity(以下简称“TE”)凭借对可持续商业实践的持续承诺,连续第13年获得道琼斯可持续发展指数的认可。
    的头像 发表于 01-10 11:14 897次阅读