0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

潘建伟团队刷新世界纪录:首次实现18个量子比特纠缠

章鹰观察 来源:新智元 作者:新智元 2018-07-03 10:35 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

中国在量子计算领域再次取得里程碑式突破!中国科学技术大学潘建伟团队在国际上首次实现18个光量子比特的纠缠,刷新了所有物理体系中最大纠缠态制备的世界纪录。该成果应用价值极大,表明我国继续在国际上引领多体纠缠的研究。

中科大潘建伟教授及其同事陆朝阳、刘乃乐、汪喜林等通过调控六个光子的偏振、路径和轨道角动量三个自由度,在国际上首次实现18个光量子比特的纠缠,刷新了所有物理体系中最大纠缠态制备的世界纪录!

作为国际前沿的量子信息科研团队之一,潘建伟团队已经在光子体系上率先实现了五光量子、六光量子、八光量子和十光量子纠缠,一度保持着国际领先水平。此次实现18个光量子比特的纠缠,该成果可进一步应用于大尺度、高效率的量子信息技术,表明我国继续在国际上引领多体纠缠的研究。

国际权威学术期刊《物理评论快报》日前发表了该成果。

打破自己10光量子纠缠记录,创造所有物理体系纠缠态制备的新世界纪录

多个量子比特的相干操纵和纠缠态制备是发展可扩展量子信息技术,特别是量子计算的最核心指标。量子计算的速度将随着可操纵的纠缠比特数目的增加而指数级提升。但要实现多个量子比特的纠缠,需要进行高精度、高效率的量子态制备和独立量子比特之间相互作用的精确调控。同时,随着量子比特数目的增加,操纵时所带来的噪声、串扰和错误也随之增加。这对量子体系的设计、加工和调控要求极高,成为量子纠缠和量子计算发展的巨大挑战。

过去20年,潘建伟及其同事一直在国际上引领着多光子纠缠和干涉度量的发展,并在此基础上开创了光子的多个自由度的调控方法。2015年,通过实现对光子偏振和轨道角动量两个自由度的量子调控技术和单光子非破坏测量,潘建伟、陆朝阳研究组首次实现单光子多自由度的量子隐形传态,相关成果被英国物理学会新闻网站“物理世界”选为“国际物理学年度突破”。

2016年底,潘建伟团队同时实现了10个光量子比特和10个超导量子比特的纠缠,刷新并一直保持着这两个世界记录。

通过多年技术攻关,潘建伟团队自主研发了高稳定单光子多自由度干涉仪,实现了不同自由度量子态之间的确定性和高效率的相干转换,完成了对18个量子比特的262144种状态的同时测量。在此基础上,研究组成功实现了18个光量子比特超纠缠态的实验制备和严格多体纯纠缠的验证,创造了所有物理体系纠缠态制备的世界纪录。

具体技术:实验证明18个量子比特GHZ纠缠

对多个粒子的多个自由度实现完全控制是量子信息处理的基本能力。我们通过同时利用6个光子的3个不同自由度,包括它们的路径、偏振和轨道角动量,实验证明了18个量子比特Greenberger-Horne-Zeilinger(GHZ)纠缠。

研究人员开发了高稳定性的干涉仪,用于光子的不同自由度之间的可逆量子逻辑运算,其精度和效率接近于一,可以同时读出18个量子比特状态产生的218=262144种结果组合。测量到的量子态保真度为0.708±0.016,证明全部18个量子比特的真实纠缠。

图1:用于创建和验证由6个光子和3个d.o.f组成的18量子比特GHZ态的方案和实验装置。

上图中展示了用于创建和验证由6个光子和3个d.o.f组成的18量子比特GHZ态的方案和实验装置。其中,

(a):六光子偏振纠缠GHZ态的产生。中心波长为为788nm,脉冲持续时间为140fs,重复频率为80MHz超快激光聚焦于三硼酸锂(LBO)并向上转换为394nm。

紫外激光聚焦在三个专门设计的三明治型非线性晶体,每个晶体由两个2毫米厚的β-硼酸钡(BBO)一个HWP组成,产生三对纠缠光子。

在每个输出中,使用了不同厚度和方向的两块YVO?晶体,以对双折射效应进行空间和时间补偿。这三对纠缠光子结合在两个偏振分束器(PBS)上,产生六光子偏振纠缠的GHZ态。

(b):对于每个单光子,它通过一个双PBS发送,并且两个SPP在单光子三量子比特态下制备。

(c):采用闭合(虚线)或开放(无虚线)干涉配置测量空间量子比特。

(d):偏振测量。

(e):通过交换门(inset)将OAM转换为偏振,从而实现高效率、双通道的OAM读出。

(f):(b)和(c)中实际使用的装置的照片。通过垂直平移,可以方便地在打开和关闭之间切换

(g):对空间(f)和OAM(h)测量中的可见性进行实时检测。

(h):(e)中实际使用的装置的照片。

图2:18量子比特GHZ纠缠的实验数据。

抢占“量子霸权”制高点,纠缠态制备是关键

由于量子信息技术的潜在价值,欧美各国都在积极整合各方面研究力量和资源,开展国家级的协同攻关。其中,欧盟在2016年宣布启动量子技术旗舰项目;美国国会则于6月27日正式通过了“国家量子行动计划”(National Quantum Initiative,NQI),确保自己不会落后其他发展量子技术的国家。

国外高科技巨头,比如谷歌、微软、IBM等也纷纷强势介入量子计算研究,并且频频宣告进步。

尤其是谷歌。谷歌从2014年开始研究基于超导超导的量子计算机。今年3月,谷歌宣布推出 72 量子比特的量子计算机,并实现了 1% 的低错误率;5月,谷歌在《自然-物理学》发表文章,描述了从随机量子电路的输出中采样位元串(bit-strings)的任务,这可以被认为是量子计算机的“hello world”程序。在另一篇发表于Science的论文《用超导量子比特演示量子霸权的蓝图》(A blueprint for demonstrating quantum supremacy with superconducting qubits)中,谷歌阐述了量子霸权的蓝图,并首次实验证明了一个原理验证的版本。

不过,IBM、英特尔、谷歌等宣布实现的量子计算机原型,这些量子比特并没有形成纠缠态。单纯比拼物理量子比特数,这一优势在应用层面尚无太大意义。

前文也说了,多个量子比特的相干操纵和纠缠态制备是发展可扩展量子信息技术,特别是量子计算的最核心指标。为什么?

经典计算机是通过一串二进制代码 0 和 1 来编码和操纵信息。量子比特所做的事情在本质上并没有区别,只是它们能够处在 0 和 1 的叠加态下。换而言之,当我们测量量子比特的状态时,会得到一个一定概率的 0 或 1 。

为了用许多这样的量子比特执行计算任务,它们必须持续地处在一种相互关联的叠加态下,即所谓的量子相干态。这些量子比特处于纠缠之中,一个比特的变化能够影响到剩下所有的量子比特。因此,基于量子比特的运算能力将远远超过传统比特。

传统电子计算机的运算能力随着比特位的增加呈线性增长,而每增加一个量子比特位,则有可能使量子计算机的运算能力加倍(呈指数增长)。这也就是为什么 5 量子比特位和 50 量子比特位的量子计算机有天壤之别。

不过,真正重要的不仅仅是有多少个量子比特(这甚至不是主要因素),而是量子比特的性能好坏,以及算法是否高效。

五光子、六光子、十光子到18个光量子,多粒子纠缠一直引领世界

多粒子纠缠的操纵作为量子计算的技术制高点,一直是国际角逐的焦点。在光子体系,潘建伟团队在国际上率先实现了五光子、六光子、八光子和十光子纠缠,一直保持着国际领先水平。

在超导体系,2015年,谷歌、美国航天航空局和加州大学圣芭芭拉分校宣布实现了9个超导量子比特的高精度操纵。这个记录在2016年底被中国科学家团队打破:潘建伟、朱晓波、王浩华等自主研发了10比特超导量子线路样品,通过发展全局纠缠操作,成功实现了当时世界上最大数目的超导量子比特的纠缠和完整的测量。

进一步,研究团队利用超导量子电路,演示了求解线性方程组的量子算法,证明了通过量子计算的并行性加速求解线性方程组的可行性。相关成果也发表于国际权威期刊《物理评论快报》。

50个光子纠缠能让量子模拟机计算能力超越“天河二号”

2017年5月3日,潘建伟教授及其同事陆朝阳、朱晓波等,联合浙江大学王浩华教授研究组攻关,利用自主发展的综合性能国际最优的量子点单光子源,通过电控可编程的光量子线路,构建了针对多光子“玻色取样”任务的光量子计算原型机。

潘建伟说,这是历史上第一台超越早期经典计算机的基于单光子的量子模拟机,为最终实现超越经典计算能力的量子计算奠定了基础。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谷歌
    +关注

    关注

    27

    文章

    6244

    浏览量

    110259
  • 量子计算机
    +关注

    关注

    4

    文章

    540

    浏览量

    27343
  • 量子比特
    +关注

    关注

    0

    文章

    41

    浏览量

    9119
  • 潘建伟
    +关注

    关注

    0

    文章

    7

    浏览量

    3680
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    中国科学技术大学:实现纠缠增强纳米尺度单自旋量子传感

    中国科学技术大学与浙江大学合作,在纳米尺度量子精密测量领域取得进展,首次实现了噪声环境下纠缠增强的纳米尺度单自旋探测。 01 测量最基础的磁性单元 探测单个自旋,测量物质
    的头像 发表于 12-01 18:42 1393次阅读
    中国科学技术大学:<b class='flag-5'>实现</b><b class='flag-5'>纠缠</b>增强纳米尺度单自旋<b class='flag-5'>量子</b>传感

    晶科能源第31次打破电池效率和组件功率世界纪录

    近日,全球领先的光伏企业晶科能源宣布,经德国哈梅林太阳能研究所(ISFH)权威认证,基于TOPCon技术平台的高效先进电池,最高光电转换效率突破27.79%,再次刷新世界纪录实现第31次打破电池
    的头像 发表于 11-24 15:00 300次阅读

    165Hz 超高刷东方屏打破 9 项世界纪录,一加携手京东方开启中国屏幕的刷新时刻

    10月14日,一加携手京东方正式发布第三代东方屏。作为全球首块165Hz超高刷高分辨率屏幕,第三代东方屏以8项技术突破刷新9项世界纪录,在流畅度、显示素质、暗光显示、护眼能力四大维度带来引领行业
    的头像 发表于 10-15 09:15 581次阅读
    165Hz 超高刷东方屏打破 9 项<b class='flag-5'>世界纪录</b>,一加携手京东方开启中国屏幕的<b class='flag-5'>刷新</b>时刻

    案例分享|PPLN在频率片编码的纠缠量子密钥分发中的应用

    简介:我们以前分享过《基于time-bin量子比特的高速率多路纠缠源——PPLN晶体应用》,探讨了PPLN在时间片QKD中的应用。时间-能量纠缠虽是PPLN最基础的产生形式,但也可以通
    的头像 发表于 09-22 11:11 327次阅读
    案例分享|PPLN在频率片编码的<b class='flag-5'>纠缠</b><b class='flag-5'>量子</b>密钥分发中的应用

    谷东智能助力美的洗衣机荆州工厂荣获世界纪录认证

    近日,美的洗衣机荆州工厂荣获总部位于伦敦的世界纪录认证机构 WRCA 授予的“世界卓越的首个多场景覆盖的智能体工厂”认证,标志着行业首个智能体工厂正式落地。这一成就的背后,谷东智能作为美的集团AI+AR眼镜合作的供应商,凭借其深耕多年顶尖的AI+AR技术,发挥了不可忽视的
    的头像 发表于 09-01 15:03 886次阅读

    广汽本田雅阁刷新吉尼斯世界纪录

    近期,在吉尼斯官方认证官的见证下,广汽本田雅阁凭借加速持久、转向灵活、车身稳重的驾控性能,以29.196秒内绕17移动桩的成绩,成功打破此前由某新能源车型创造的30秒绕16移动桩的纪录,创造新的全球汽车挑战“30秒内驾车绕移
    的头像 发表于 08-27 10:12 877次阅读

    天合光能再度刷新叠层组件功率世界纪录

    继6月9日宣布钙钛矿/晶体硅30.6%叠层组件效率及829W叠层组件功率双世界纪录后,天合光能今日再传喜讯——叠层组件功率提升至841W,再次打破世界纪录。短短一周内三次刷新世界纪录,充分彰显了“天合速度”在前沿创新技术上的强大
    的头像 发表于 06-13 15:58 729次阅读

    量子计算最新突破!“量子+AI”开启颠覆未来的指数级革命

    电子发烧友网报道(文/李弯弯)量子计算是一种基于量子力学原理的新型计算模式,其核心在于利用量子比特的叠加态和纠缠态特性,
    的头像 发表于 05-28 00:40 1.2w次阅读
    <b class='flag-5'>量子</b>计算最新突破!“<b class='flag-5'>量子</b>+AI”开启颠覆未来的指数级革命

    隆基再次刷新晶硅-钙钛矿叠层电池转换效率世界纪录

    近日,经美国国家可再生能源实验室(NREL)认证,隆基自主研发的晶硅-钙钛矿两端叠层电池转换效率达到34.85%,再次刷新晶硅-钙钛矿叠层电池转换效率世界纪录。消息一出,关于隆基“量产一代、研发一代、储备一代”的产品研发体系再次引发行业关注和讨论。
    的头像 发表于 04-27 14:01 761次阅读

    天合光能钙钛矿晶体硅叠层技术再破世界纪录

    (Fraunhofer ISE, CalLab)第三方独立认证,最高电池效率达到31.1%,不仅创造了大面积叠层太阳电池效率新的世界纪录,而且首次在210mm工业级电池尺寸上实现超过31%的电池效率,第32次创造和
    的头像 发表于 04-11 15:50 722次阅读

    量子技术最新进展 首款高精度量子纠缠光学滤波器问世 还有量子计算机运行十亿级AI微调大模型

    给大家带来一些量子技术的最新消息,最前沿的科研进展。 首款高精度量子纠缠光学滤波器问世 据外媒报道,美国南加州大学团队在最新一期《科学》杂志上发表
    的头像 发表于 04-08 16:04 1337次阅读

    量子处理器的作用_量子处理器的优缺点

    量子比特可以同时处于0和1的状态,这种量子叠加特性使得量子处理器能够同时处理大量信息。此外,量子比特
    的头像 发表于 01-27 13:44 1509次阅读

    中国“人造太阳”刷新世界纪录

    近日,位于安徽合肥的全超导托卡马克核聚变实验装置(EAST),被誉为中国的“人造太阳”,成功创造了新的世界纪录。该装置首次实现了1亿摄氏度下持续1000秒的“高质量燃烧”,这一成就标志着中国在聚变
    的头像 发表于 01-21 10:28 761次阅读

    天合光能创造高效n型HJT电池组件效率世界纪录

    ‌)认证,最高组件窗口效率达到25.44%,创造了大面积HJT组件窗口效率的世界纪录,这是天合光能第30次创造和刷新世界纪录,也是目前正背面接触结构晶体硅组件的最高纪录,创造了单结晶体硅太阳电池组件光电转换效率的
    的头像 发表于 01-06 15:02 1089次阅读

    量子通信的基本原理 量子通信网络的构建

    比特(qubit)来表示,它是量子通信的基本单位。 2. 量子纠缠 量子纠缠
    的头像 发表于 12-19 15:50 3546次阅读