0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

探讨如何将机器学习应用到物联网中

设计idea 来源:互联网 作者:佚名 2018-05-23 09:24 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

本项目探讨如何将机器学习(Machine learning)应用到物联网IoT,Internet of Things)中。我们将使用 Android Things 作为我们的物联网平台,并且采用 Google TensorFlow 作为我们的机器学习引擎。如今,机器学习与物联网都是技术话题中的大热门。

下面是维基百科上对机器学习的一个简单定义

机器学习是计算机科学中的一个领域,它使计算机系统能够利用数据进行 “学习”(即逐步提高特定任务的性能),而不需要进行显式编程(Explicitly programmed)。

换句话说,在进行训练步骤以后,系统就可以预测结果(即使这不是专门为这些结果进行编程的)。另一方面,我们都了解物联网以及连接设备的概念。最有前途的话题之一便是如何将机器学习应用于物联网之中,以构建能够 “学习” 的专家系统。此外,该系统会运用这些知识来控制和管理实物。

下面列举一些应用到机器学习,以及物联网能产生重要价值的领域:

  • 预测维护(Predictive maintenance)中的工业物联网(IIoT,Industrial IoT)。

  • 在消费者物联网(Consumer IoT)中,机器学习可以使设备变得更加智能化,从而适应我们的习惯。

在本教程中,我们将探索如何使用 Android Things 和 TensorFlow 将机器学习应用到物联网中。这一 Android Things 物联网项目背后的基本思想就是,探索如何构建一个能够识别一些基本形状(比如箭头)并被控制的机器人小车(Robot car)。我们已经介绍过如何使用 Android Things 构建机器人小车,我建议您在开始此项目之前先阅读那篇教程。

本次机器学习和物联网项目主要涵盖以下主题:

  • 如何使用 Docker 配置 TensorFlow 环境

  • 如何训练 TensorFlow 系统

  • 如何集成 TensorFlow 与 Android Things

  • 如何使用 TensorFlow 输出结果来控制机器人小车

本项目衍生自 Android Things TensorFlow 图像分类器

我们开始吧!

如何在 Tensorflow 中创建一个图像分类器

在开始之前,我们有必要先安装并配置好 TensorFlow 环境。我并非机器学习专家,所以我需要找一些速成的东西并准备好使用,以便我们可以构建 TensorFlow 图像分类器。因此,我们可以使用 Docker 来运行一个搭载了 TensorFlow 的映像。照着以下步骤进行:

1. 克隆 TensorFlow 仓库:

gitclonehttps://github.com/tensorflow/tensorflow.git
cd/tensorflow
gitcheckoutv1.5.0

2. 创建一个目录(/tf-data),该目录将保存我们在项目中需要用到的所有文件。

3. 运行 Docker:

dockerrun-it\--volume/tf-data:/tf-data\--volume/tensorflow:/tensorflow\
--workdir/tensorflowtensorflow/tensorflow:1.5.0bash

使用这些命令,我们就可以运行一个交互式 TensorFlow 环境并增加(Mount)一些我们将在项目中使用到的目录。

如何训练 TensorFlow

在 Android Things 系统能够识别图像之前,我们有必要先训练 TensorFlow 引擎,以构建其模型。以此为由,收集一些图片是有必要的。如前所述,我们希望使用箭头来控制 Android Things 机器人小车 —— 所以我们必须收集至少四种类型的箭头:

  • 向上箭头

  • 向下箭头

  • 左箭头

  • 右箭头

为训练该系统,我们有必要对这四种不同的图像类别创建一个“知识库”。在 /tf-data 中一个名为 images 的目录下创建四个目录,命名如下:

  • up-arrow

  • down-arrow

  • left-arrow

  • right-arrow

现在是时候去搜集图像资源了。我使用的是 Google 图片搜索,您也可以使用其他方法进行搜集。为了简化图片下载过程,您应该安装 Chrome 插件,它能够一键下载所有图片。可别忘了,您下载的图像越多,其训练过程(Training process)越好(即使创建模型的时间可能会有所增加)。

打开浏览器,开始查找以下四类图像:

每个类别我分别下载了 80 张图。我并不关心图片的扩展。

一旦所有类别都有其图像,请按照以下步骤操作(在 Docker 界面中):

python/tensorflow/examples/image_retraining/retrain.py\
--bottleneck_dir=tf_files/bottlenecks\
--how_many_training_steps=4000\
--output_graph=/tf-data/retrained_graph.pb\
--output_labels=/tf-data/retrained_labels.txt\
--image_dir=/tf-data/images

这操作可能需要花费一些时间,所以要耐心等待。最后,在你的文件夹 /tf-data 中应有两个文件:

  1. retrained_graph.pb

  2. retrained_labels.txt

第一个文件包含我们的模型,这是 TensorFlow 训练过程的结果。而第二个文件则包含了与我们的四个图像类别相关的标签

如何测试 Tensorflow 模型

如果你想测试模型,以检查一切是否正常,你可以使用以下命令:

pythonscripts.label_image\
--graph=/tf-data/retrained-graph.pb\
--image=/tf-data/images/[category]/[image_name.jpg]

优化模型

在能够使用这个 TensorFlow 模型到 Android Things 项目中之前,我们有必要优化它:

python/tensorflow/python/tools/optimize_for_inference.py\--input=/tf-data/retrained_graph.pb\--output=/tf-data/opt_graph.pb\--input_names="Mul"\--output_names="final_result"

这就是我们的模型。我们将使用此模型将机器学习应用于物联网(即集成 Android Things 与 TensorFlow)。其目标是为 Android Things 应用提供智能识别箭头图像,并作出相应反应,从而控制机器人小车的方向。

如果您想了解更多关于 TensorFlow 的细节,以及如何生成模型,请查看官方文档和这个教程

如何使用 Android Things 和 TensorFlow 将机器学习应用到物联网中

一旦 TensorFlow 数据模型准备就绪,我们就可以进入下一步:如何集成 Android Things 与 TensorFlow。为达成这一目的,我们可以将此任务分为两步:

  1. 硬件部分,我们将电机和其他外围设备(Peripheral)连接到 Android Things 板上

  2. 实现应用程序

Android Things 原理图

在深入探讨如何连接外围设备之前,我们先看看下面这个 Android Things 项目中使用的组件列表:

  1. Android Things 板(树莓派 3,Raspberry Pi 3)

  2. 树莓派相机

  3. 一个 LED

  4. LN298N 双H桥(用以控制电机)

  5. 带两个轮子的机器人小车底盘

我不在此介绍如何使用 Android Things 控制电机,因为我们已经在之前的文章中介绍过这一点。

以下是原理图:

1620

上图中,相机组件并未表现出来。其最终的结果如下:

基于 TensorFlow 实现 Android Things App

最后一步便是实现 Android Things 应用程序。为此,我们可以重用 GitHub 上名为 TensorFlow 图像分类器示例的示例项目。在开始之前,先克隆 GitHub 仓库,以便您可以修改源代码。

该 Android Things 应用与原来的应用有所不同,在于:

  1. 它不使用按钮来启动相机捕捉图像

  2. 它使用不同的模型

  3. 它使用一个闪烁的 LED 进行通知,摄像机在 LED 停止闪烁后拍摄照片

  4. 它在 TensorFlow 检测到图像(箭头)时控制电机。此外,在从步骤 3 开始循环之前,先打开电机 5 秒

要处理闪烁的 LED,请使用以下代码:

privateHandlerblinkingHandler=newHandler();privateRunnableblinkingLED=newRunnable(){
@Overridepublicvoidrun(){
try{
//Ifthemotorisrunningtheappdoesnotstartthecam
if(mc.getStatus())
return;
Log.d(TAG,"Blinking..");
mReadyLED.setValue(!mReadyLED.getValue());
if(currentValue<= NUM_OF_TIMES) {
       currentValue++;
       blinkingHandler.postDelayed(blinkingLED, 
                       BLINKING_INTERVAL_MS);
     }
     else {
      mReadyLED.setValue(false);
      currentValue = 0;
      mBackgroundHandler.post(mBackgroundClickHandler);
     }
   } catch (IOException e) {
     e.printStackTrace();
   }
  }};

当 LED 停止闪烁时,应用程序将捕获图像。

现在有必要关注如何根据检测到的图像来控制电机。修改方法如下:

@OverridepublicvoidonImageAvailable(ImageReaderreader){
finalBitmapbitmap;
try(Imageimage=reader.acquireNextImage()){
bitmap=mImagePreprocessor.preprocessImage(image);
}
finalListresults=
mTensorFlowClassifier.doRecognize(bitmap);
Log.d(TAG,
"GotthefollowingresultsfromTensorflow:"+results);
//Checktheresult
if(results==null||results.size()==0){
Log.d(TAG,"Nocommand..");
blinkingHandler.post(blinkingLED);
return;
}
Classifier.Recognitionrec=results.get(0);
Floatconfidence=rec.getConfidence();
Log.d(TAG,"Confidence"+confidence.floatValue());
if(confidence.floatValue()< 0.55) {
     Log.d(TAG, "Confidence too low..");
     blinkingHandler.post(blinkingLED);
     return ;
    }
    String command = rec.getTitle();
    Log.d(TAG, "Command: " + rec.getTitle());
    if (command.indexOf("down") != -1)
       mc.backward();
    else if (command.indexOf("up") != -1)
       mc.forward();
    else if (command.indexOf("left") != -1)
       mc.turnLeft();
    else if (command.indexOf("right") != -1)
       mc.turnRight();}

在这种方法中,当 TensorFlow 返回匹配捕获图像的可能标签后,应用程序会将结果与可能的方向进行比较,从而控制电机。

最后,是时候使用在刚开始时创建的模型了。拷贝 assets 文件夹下的 opt_graph.pb 与 reatrained_labels.txt 文件,并替换现有文件。

打开 Helper.java 并修改以下几行:

publicstaticfinalintIMAGE_SIZE=299;privatestaticfinalintIMAGE_MEAN=128;privatestaticfinalfloatIMAGE_STD=128;privatestaticfinalStringLABELS_FILE="retrained_labels.txt";publicstaticfinalStringMODEL_FILE="file:///android_asset/opt_graph.pb";publicstaticfinalStringINPUT_NAME="Mul";publicstaticfinalStringOUTPUT_OPERATION="output";publicstaticfinalStringOUTPUT_NAME="final_result";

运行应用程序,试试向相机展示箭头,并检查结果。机器人小车必须按照所示的箭头进行移动。

小结

在本教程的最后,我们介绍了如何运用 Android Things 与 TensorFlow 将机器学习应用到物联网中。我们可以使用图像控制机器人小车,并根据显示的图像移动机器人小车。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136231
  • IOT
    IOT
    +关注

    关注

    189

    文章

    4369

    浏览量

    206567
  • tensorflow
    +关注

    关注

    13

    文章

    331

    浏览量

    61852
  • Android Things
    +关注

    关注

    0

    文章

    10

    浏览量

    4267
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    Lora基站在联网应用的重要性

    Lora基站在联网应用具有重要的地位。首先,Lora基站可以实现对联网设备的远程监测和控制,为
    发表于 12-03 07:09

    学习联网怎么入门?

    随着联网技术的不断发展,越来越多的人开始关注学习这一领域。但是对于初学者来说,联网似乎是一个庞杂的概念,
    发表于 10-14 10:34

    学习联网可以做什么工作?

    学习联网专业后,你可以从事多种与联网相关的工作。联网
    发表于 10-11 16:40

    FPGA在机器学习的具体应用

    ,越来越多地被应用于机器学习任务。本文探讨 FPGA 在机器
    的头像 发表于 07-16 15:34 2632次阅读

    如何将大模型应用到效能评估系统

    行业芯事行业资讯
    北京华盛恒辉科技
    发布于 :2025年06月17日 10:14:07

    如何将人工智能应用到效能评估

    行业芯事行业资讯
    北京华盛恒辉科技
    发布于 :2025年06月17日 10:13:04

    联网的应用范围有哪些?

    在生活的一个小小体现。 从技术层面看,联网融合了多种技术,包括传感器技术、网络通信技术、大数据与云计算技术等。传感器负责采集各种物理量、化学量等信息,如温度传感器感知环境温度,压力传感器检测物体受力
    发表于 06-16 16:01

    如何将数字孪生技术应用到兵棋推演

    行业芯事行业资讯
    北京华盛恒辉科技
    发布于 :2025年06月16日 12:03:00

    联网未来发展趋势如何?

    技术将为人们带来更加安全、便捷和舒适的居住环境。 工业互联网:工业互联网联网行业的热门领域。通过
    发表于 06-09 15:25

    Nordic nRF54 系列芯片:开启 AI 与联网新时代​

    在科技飞速发展的今天,芯片技术的创新始终是推动行业进步的关键力量。Nordic 公司的 nRF54 系列芯片,正以其卓越的性能和独特的设计,为 AI 机器学习联网应用带来前所未有的
    发表于 04-01 00:18

    蜂窝联网怎么选

    的数据传输速率。有了蜂窝联网技术,您就不必在功耗和数据传输速率之间做出妥协,而是可以两全其美。 终身成本:虽然某些 LPWAN 技术的前期成本可能看起来很吸引人,但评估整个生命周期的成本(部署
    发表于 03-17 11:46

    宇树科技在联网方面

    。 人工智能算法优化:宇树科技不断优化其机器人的人工智能算法,使其能够在联网环境更好地进行智能决策。通过机器
    发表于 02-04 06:48

    联网就业有哪些高薪岗位?

    系统的数据安全和隐私保护,这一岗位的需求也在逐年上升。  随着联网行业的蓬勃发展,这些高薪岗位持续吸引着大量求职者。然而,高薪并不是唾手可得的,对于求职者而言,还需要具备扎实的技术功底、丰富的实践经验和持续
    发表于 01-10 16:47

    安科瑞EIOT能源联网平台如何应用到连锁门店

    先进的集团能源管理系统,进而实现节能减排,优化运营成本,提高整体效率。 以某大型连锁便利店为例,全国6000家门店,面临的能源改造困难有: 1.门店过于分散,改造的人力和差旅成本极高; 2.联网系统调试难度大,需要技术人员; 3.数据的稳定性
    的头像 发表于 12-31 14:24 719次阅读
    安科瑞EIOT能源<b class='flag-5'>物</b><b class='flag-5'>联网</b>平台如何<b class='flag-5'>应用到</b>连锁门店<b class='flag-5'>中</b>

    zeta在机器学习的应用 zeta的优缺点分析

    探讨ZETA在机器学习的应用以及ZETA的优缺点时,需要明确的是,ZETA一词在不同领域可能有不同的含义和应用。以下是根据不同领域的ZETA进行的分析: 一、ZETA在
    的头像 发表于 12-20 09:11 1625次阅读