0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

模型案例之绵羊检测模型

柴火创客空间 来源:柴火创客空间 2024-12-20 10:27 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

导读

2023年以ChatGPT为代表的大语言模型横空出世,它的出现标志着自然语言处理领域取得了重大突破。它在文本生成、对话系统和语言理解等方面展现出了强大的能力,为人工智能技术的发展开辟了新的可能性。同时,人工智能技术正在进入各种应用领域,在智慧城市、智能制造、智慧医疗、智慧农业等领域发挥着重要作用。

柴火创客2024年将依托母公司Seeed矽递科技在人工智能领域的创新硬件,与全球创客爱好者共建“模型仓”,通过“SenseCraft AI”平台可以让使用者快速部署应用体验人工智能技术!

本期介绍:

模型评估(Evaluation)

深度学习广泛应用于图像识别、语音识别、自然语言处理等多个领域。模型通过大量数据的学习和训练,能够自动提取数据中的特征,并基于这些特征进行预测和分类。如何准确评估这些模型的性能,确保它们在实际应用中能够表现出色,就需要依赖于模型评估这一关键环节。

模型评估

aab93f9a-bd27-11ef-8732-92fbcf53809c.png

模型评估(Evaluation)是指对训练完成的模型进行性能分析和测试的过程,以确定模型在新数据上的表现如何。

在模型评估中,通常会将数据集划分为训练集、验证集和测试集。

训练集(Training Set):用于模型学习的数据集,通过不断调整参数来最小化训练误差。

验证集(Validation Set):在训练过程中用于评估模型性能,以选择最佳参数和避免过拟合的数据集。

测试集(Test Set):模型训练完成后,用于评估模型泛化能力的独立数据集。

为什么需要模型评估?

aacfa406-bd27-11ef-8732-92fbcf53809c.png

衡量模型性能:通过评估模型在测试集或验证集上的性能指标,如准确率、召回率、F1得分等,可以了解模型的预测能力和泛化能力,判断模型是否满足预期需求。

比较不同模型:模型评估可以帮助我们比较不同算法或超参数配置下训练的模型,选择最优的模型进行部署。

诊断模型问题:评估结果可以帮助我们识别模型存在的问题,如过拟合、欠拟合、类别不平衡等,从而针对性地优化模型。

监控模型性能:在模型投入实际使用后,持续的模型评估可以检测模型性能是否发生变化,及时发现并解决问题。

模型选择:在有多个可选模型的情况下,评估结果可以为最终选择最优模型提供依据。

评估指标

aaf2c72e-bd27-11ef-8732-92fbcf53809c.png

模型评估指标是用于量化模型在处理数据时表现的指标。它们帮助我们理解模型的性能、准确度和泛化能力,并且可以用于比较不同模型之间的优劣。

分类任务的评估指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)和F1分数(F1 Score)等。

准确率(Accuracy)

定义:准确率是最直观也最常被提及的评估指标之一,它衡量的是模型预测正确的样本数占总样本数的比例。

计算公式:准确率 = (真正例 + 真负例) / (真正例 + 假正例 + 真负例 + 假负例)

精确率(Precision)

定义:精确率是指模型预测为正例中真正是正例的比例,它反映了模型预测为正例的结果的可信度。

计算公式:精确率 = 真正例 / (真正例 + 假正例)

召回率(Recall)

定义:召回率,也称为灵敏度(Sensitivity)或真正例率(True Positive Rate),是指模型在所有实际为正类的样本中,被正确预测为正类的样本的比例。它反映了模型捕获正类样本的能力。

计算公式:召回率 = 真正例 / (真正例 + 假负例)

ab0a14d8-bd27-11ef-8732-92fbcf53809c.png

F1分数(F1 Score)

定义:F1分数是精确率和召回率的调和平均数,旨在综合两者的表现,提供一个平衡指标。

计算公式:F1分数 = 2 * (精确率 * 召回率) / (精确率 + 召回率)

绵羊检测模型

ab20a50e-bd27-11ef-8732-92fbcf53809c.png

该 AI 模型利用先进的 Swift yolo 算法,专注于绵羊识别,可以在实时视频流中准确检测和标记绵羊。它特别适用于 Seeed Studio Grove Vision AI (V2) 设备,提供高兼容性和稳定性。

应用场景

ab2c5714-bd27-11ef-8732-92fbcf53809c.png

智慧牧场管理

- 数量统计:对牧场绵羊数量进行精准统计,避免人工遗漏或计算错误。

- 行为监测:监控绵羊的行为和活动轨迹,发现异常行为(比如长时间静止、生病状态等)。

- 位置追踪:实时定位绵羊位置,防止走失或逃逸,帮助大规模放牧管理。

- 疾病检测:结合图像或行为数据,识别生病或受伤的绵羊,及时进行干预。

生态保护与自然监测

- 野生种群保护:监测野生绵羊种群的分布及数量变化,为生态保护提供科学数据。

- 生态影响评估:统计绵羊活动对草场和生态环境的影响,优化自然资源管理。

- 物种迁徙监测:追踪野生绵羊的迁徙行为,研究群体生态模式。

草场资源管理

- 载畜量评估:通过检测绵羊数量和分布,分析草场的资源承载能力。

- 牧草分布规划:将绵羊检测与草场状况结合,优化放牧路线和资源利用,防止草地退化。

在Grove-VisionAIV2模块上部署此模型

1、打开SenseCraft AI平台,如果第一次使用请先注册一个会员账号,还可以设置语言为中文。

平台地址:https://sensecraft.seeed.cc/ai/#/model

ab466a96-bd27-11ef-8732-92fbcf53809c.png

2、在顶部单击【预训练模型】菜单,在公共AI模型列表7中找到【绵羊检测】模型,单击此模型图片,如下图所示。

ab5c3006-bd27-11ef-8732-92fbcf53809c.png

3、进入【绵羊检测】模型介绍页面,单击右侧的“部署模型”按钮,如下图所示。

ab813004-bd27-11ef-8732-92fbcf53809c.png

4、进入部署绵羊检测模型页面,按提示步骤先连接摄像头,再连接设备到电脑USB接口上,最后单击【连接设备】按钮,如下图所示。

ab8b79ec-bd27-11ef-8732-92fbcf53809c.png

5、弹出部署模型窗口,单击“确定”按钮,如下图所示。

aba32a88-bd27-11ef-8732-92fbcf53809c.png

6、弹出连接到串行端口窗口,选择端口号后单击“连接”按钮,如下图所示。

abaa7cd4-bd27-11ef-8732-92fbcf53809c.png

7、开始进行模型部署、固件下载、设备重启等过程,完成后在预览中即可看到当前摄像头视频内容,将摄像头对准绵羊的图片查看预测效果,如下图所示。

abbf0dac-bd27-11ef-8732-92fbcf53809c.png

预测效果视频演示

Grove Al视觉模块 V2套装介绍

abcffedc-bd27-11ef-8732-92fbcf53809c.png

Grove Al视觉模块 V2

abe96d86-bd27-11ef-8732-92fbcf53809c.png

OV5647-62摄像头

Grove - Vision Al Module V2是一款拇指大小的人工智能视觉模块, 配备Himax WiseEye2 HX6538处理器, 该处理器采用 ArmCortex-M55双核架构。

它具有标准的CSI接口, 并与树莓派相机兼容。它有一个内置的数字麦克风和SD卡插槽。它非常适用于各种嵌入式视觉项目。

有了SenseCraft Al算法平台, 经过训练的ML模型可以部署到传感器, 而不需要编码。它兼容XIAO系列和Arduino生态系统, 是各种物体检测应用的理想选择。

Arm Ethos-U55 嵌入式神经网络处理器(NPU)

嵌入式神经网络处理器(NPU)是一种特别设计用于执行神经网络计算的高效率处理器。它主要基于数据驱动并行计算架构,特别擅长处理视频、图像等大量的多媒体数据。NPU模仿了生物神经网络的架构,与CPUGPU相比,它能够通过更少的指令(一条或几条)完成神经元的处理,因此在深度学习的处理效率方面具有明显优势。

它具有标准的CSI接口, 并与树莓派相机兼容。它有一个内置的数字麦克风和SD卡插槽。它非常适用于各种嵌入式视觉项目。

有了SenseCraft Al算法平台, 经过训练的ML模型可以部署到传感器, 而不需要编码。它兼容XIAO系列和Arduino生态系统, 是各种物体检测应用的理想选择。

主要硬件配置

- 板卡基于WiseEye2 HX6538处理器, 采用双核ARM Cortex-M55架构 。

- 配备集成Arm Ethos-U55微神经网络加速单元, 兼容的树莓派相机

- 板载PDM麦克风, SD卡插槽, Type-C, Grove接口, 丰富的外设支持样机开发 。

- Seeed Studio XIAO的可扩展性, SenseCraft Al的现成AI模型用于无代码部署。

- 支持各种有效的模型, 包括MobilenetV1、MobilenetV2、 Eficientnet-Lite、Yolov5和Yolov8。

写在最后

SenseCraft-AI平台的模型仓数量还很少,但是好消息是它支持自定义模型上传并输出推理结果,平台会逐渐增加模型仓的数量和分享有爱好者设计的模型仓原型,敬请关注!

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1813

    文章

    49746

    浏览量

    261602
  • 模型
    +关注

    关注

    1

    文章

    3649

    浏览量

    51719
  • NPU
    NPU
    +关注

    关注

    2

    文章

    358

    浏览量

    20843

原文标题:模型案例:| 绵羊检测模型!

文章出处:【微信号:ChaiHuoMakerSpace,微信公众号:柴火创客空间】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    小白必看:模型静态测试效率翻倍——MXAM详解#simulink #Siumlink模型测试

    模型
    北汇信息POLELINK
    发布于 :2025年10月24日 18:03:11

    NVMe高速传输摆脱XDMA设计27: 桥设备模型设计

    桥设备模型模拟虚拟 PCI 桥设备的配置空间和路由功能。 桥设备是拓展 PCIe 链路的关键设备, 在 NVMe 子系统模型中, 桥设备模型一方面负责模拟 PCIE 集成块的配置空间, 另一方面用于
    发表于 09-18 09:11

    机场设备智能运维管理大模型

    模型
    中设智控
    发布于 :2025年08月13日 11:27:24

    请问嘉楠平台k230训练的跌倒检测模型里面的设置是怎么样的?

    我想要了解K230所使用的跌倒检测模型中的设置,例如人体检测是如何实现的,在模型检测中,人体的节点是多少。或者想请教一下相关的文档或者内容在
    发表于 06-23 07:05

    FA模型卡片和Stage模型卡片切换

    卡片切换 卡片切换主要包含如下三部分: 卡片页面布局:FA模型卡片和Stage模型卡片的布局都采用类web范式开发可以直接复用。 卡片配置文件:FA模型的卡片配置在config.json中
    发表于 06-06 08:10

    FA模型和Stage模型API切换概述

    API切换概述 FA模型和Stage模型由于线程模型和进程模型的差异,部分接口仅在FA模型下才能使用,针对这部分接口在SDK的接口中有FA
    发表于 06-06 06:29

    从FA模型切换到Stage模型时:module的切换说明

    升级到Stage模型时,Stage模型的name需要和FA模型的package保持一致,否则会导致升级失败。 name标识HAP的类名。/FA模型中实际未使能,Stage
    发表于 06-05 08:16

    FA模型访问Stage模型DataShareExtensionAbility说明

    FA模型访问Stage模型DataShareExtensionAbility 概述 无论FA模型还是Stage模型,数据读写功能都包含客户端和服务端两部分。 FA
    发表于 06-04 07:53

    KaihongOS操作系统FA模型与Stage模型介绍

    FA模型与Stage模型介绍 KaihongOS操作系统中,FA模型(Feature Ability)和Stage模型是两种不同的应用模型
    发表于 04-24 07:27

    如何使用OpenVINO™运行对象检测模型

    无法确定如何使用OpenVINO™运行对象检测模型
    发表于 03-06 07:20

    【「基于大模型的RAG应用开发与优化」阅读体验】+大模型微调技术解读

    今天学习<基于大模型的RAG应用开发与优化>这本书。大模型微调是深度学习领域中的一项关键技术,它指的是在已经预训练好的大型深度学习模型基础上,使用新的、特定任务相关的数据
    发表于 01-14 16:51

    【「大模型启示录」阅读体验】营销领域大模型的应用

    今天跟随「大模型启示录」这本书,学习在营销领域应用大模型。 大模型通过分析大量的消费者数据,包括购买历史、浏览记录、社交媒体互动等,能够识别消费者的偏好和行为模式。这种分析能力有助于企业更好地理
    发表于 12-24 12:48

    【「大模型启示录」阅读体验】对大模型更深入的认知

    阅读《大模型启示录》这本书,我得说,它彻底颠覆了我对大模型的理解。作为一个经常用KIMI和豆包这类AI工具来完成作业、整理资料的大学生,我原以为大模型就是这些工具背后的技术。但这本书让我意识到
    发表于 12-20 15:46

    AI模型部署边缘设备的奇妙之旅:目标检测模型

    以及边缘计算能力的增强,越来越多的目标检测应用开始直接在靠近数据源的边缘设备上运行。这不仅减少了数据传输延迟,保护了用户隐私,同时也减轻了云端服务器的压力。然而,在边缘端部署高效且准确的目标检测模型
    发表于 12-19 14:33

    【「大模型启示录」阅读体验】如何在客服领域应用大模型

    在客服领域是大模型落地场景中最多的,也是最容易实现的。本身客服领域的特点就是问答形式,大模型接入难度低。今天跟随《大模型启示录 》这本书,学习大模型在客服领域的改变。选择大
    发表于 12-17 16:53