0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

村田贴片电容用陶瓷材料的物理常数

昂洋科技 来源:jf_78940063 作者:jf_78940063 2024-10-31 15:03 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

村田贴片电容所使用的陶瓷材料的物理常数可以根据具体的材料和用途有所不同。但基于提供的参考文章信息,以下是一些常见的陶瓷材料物理常数的概述,特别是针对片状多层陶瓷电容器(MLCC)中常用的材料:

1、杨氏模量

对于温度补偿用 (CaZrO3) 陶瓷材料,杨氏模量约为200 GPa。

对于高介电常数 (BaTiO3) 陶瓷材料,杨氏模量约为100 GPa。

2、泊松比

对于温度补偿用 (CaZrO3) 陶瓷材料,泊松比约为0.25.

对于高介电常数 (BaTiO3) 陶瓷材料,泊松比约为0.35.

3、热导率

温度补偿用 (CaZrO3) 陶瓷材料的热导率约为3.7 W/m/K。

高介电常数 (BaTiO3) 陶瓷材料的热导率约为2.9 W/m/K。

4、热膨胀率

温度补偿用 (CaZrO3) 陶瓷材料的热膨胀率约为9x10^-6/K。

高介电常数 (BaTiO3) 陶瓷材料的热膨胀率约为11x10^-6/K。

5、其他参数

比热容、抗折强度、维氏硬度等参数也对于陶瓷材料的性能至关重要,但具体数值可能因材料配方和制造工艺的不同而有所变化。

请注意,以上数值是基于一般性的参考文章信息,并且可能因具体的村田贴片电容型号、系列或制造工艺的不同而有所变化。此外,村田电容可能会根据不同的应用场景和客户需求,使用不同配方的陶瓷材料,因此具体的物理常数可能会有所不同。在实际应用中,建议参考村田电容的官方数据手册或联系其技术支持部门以获取准确的物理常数信息。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 贴片电容
    +关注

    关注

    14

    文章

    627

    浏览量

    29544
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    贴片电容、三星贴片电容、国巨贴片电容谁更优?

    在电子元器件市场中,(Murata)、三星(Samsung)和国巨(YAGEO)作为贴片电容领域的三大巨头,凭借各自的技术优势和市场定位占据重要份额。本文将从核心性能、应用场景、价
    的头像 发表于 11-04 14:50 211次阅读
    <b class='flag-5'>村</b><b class='flag-5'>田</b><b class='flag-5'>贴片</b><b class='flag-5'>电容</b>、三星<b class='flag-5'>贴片</b><b class='flag-5'>电容</b>、国巨<b class='flag-5'>贴片</b><b class='flag-5'>电容</b>谁更优?

    温度波动如何“重塑”贴片电容容值?

    贴片电容的容值随温度变化是因其核心材料(如陶瓷、钽等)的物理特性对温度敏感,导致介电常数、电极结
    的头像 发表于 10-31 16:06 479次阅读
    温度波动如何“重塑”<b class='flag-5'>贴片</b><b class='flag-5'>电容</b>容值?

    电容的分类体系与技术特性

    制作所凭借其多元化的电容产品线覆盖了从消费电子到航空航天的高端市场。其电容产品以材料特性、工艺结构和应用场景为核心维度,形成了涵盖
    的头像 发表于 08-01 15:12 573次阅读

    贴片电容的阻抗匹配问题如何解决?

    贴片电容在阻抗匹配问题上的解决方案需结合其高频特性优化与具体应用场景设计, 核心策略包括利用低ESL/ESR特性实现高频阻抗控制、通过温度稳定
    的头像 发表于 07-25 15:23 365次阅读

    开始量产首款0402英寸47μF多层陶瓷电容

    株式会社制作所(以下简称“”)今日宣布:公司已开始量产首款(1)尺寸仅为0402英寸
    的头像 发表于 07-11 14:15 467次阅读
    <b class='flag-5'>村</b><b class='flag-5'>田</b>开始量产<b class='flag-5'>村</b><b class='flag-5'>田</b>首款0402英寸47μF多层<b class='flag-5'>陶瓷</b><b class='flag-5'>电容</b>器

    贴片电容的高频特性与阻抗匹配

    贴片电容凭借其卓越的高频特性和精准的阻抗匹配能力,成为射频电路、通信模块及高速数字系统的核心元件。其高频性能的优化源于材料科学、结构设计
    的头像 发表于 06-25 15:26 501次阅读
    <b class='flag-5'>村</b><b class='flag-5'>田</b><b class='flag-5'>贴片</b><b class='flag-5'>电容</b>的高频特性与阻抗匹配

    贴片电感的高Q值特性如何实现?

    在快速发展的电子行业中,高性能、小型化的电子元件需求日益增长。(Murata)作为全球知名的电子元件制造商,其贴片电感以卓越的性能和多样化的应用而备受瞩目。其中,
    的头像 发表于 06-10 14:38 535次阅读
    <b class='flag-5'>村</b><b class='flag-5'>田</b><b class='flag-5'>贴片</b>电感的高Q值特性如何实现?

    贴片电容的高频特性与优势分析

    的高频特性 贴片电容在高频电路中表现出色,这主要得益于其采用先进的生产工艺和优质的材料。这些电容
    的头像 发表于 05-08 14:36 495次阅读
    <b class='flag-5'>村</b><b class='flag-5'>田</b><b class='flag-5'>贴片</b><b class='flag-5'>电容</b>的高频特性与优势分析

    引领产业变革的先锋陶瓷材料

    ,形成跨界融合的产业新生态。以下深度解析十类引领产业变革的先锋陶瓷材料及其战略价值:01片式多层陶瓷电容器(MLCC)作为现代电子工业的'细胞级'元件,MLCC占据全
    的头像 发表于 04-11 12:20 6947次阅读
    引领产业变革的先锋<b class='flag-5'>陶瓷材料</b>

    与国巨贴片电容:性能与价格深度剖析

    在电子元件领域,贴片电容以其小型化、高集成度和稳定性能著称,其中村与国巨两大品牌尤为突出。以下是对这两家公司贴片电容性能与价格的全面分析。
    的头像 发表于 02-21 18:16 880次阅读

    陶瓷电容材质解析:MLCC的高稳定性优势

    积大容量等特点,在电子领域树立了标杆。今天我们将深入介绍陶瓷电容的材质特性,并重点分析MLCC的高稳定性优势。 陶瓷
    的头像 发表于 02-21 14:59 1161次阅读

    贴片电阻电容报价是多少

    贴片电阻电容的报价因产品型号、规格、采购数量以及供应商的不同而有所差异。以下是根据当前市场情况,对
    的头像 发表于 01-20 16:16 1040次阅读
    <b class='flag-5'>村</b><b class='flag-5'>田</b><b class='flag-5'>贴片</b>电阻<b class='flag-5'>电容</b>报价是多少

    电容标签材质代码如何看?

    电容的标签上通常包含一系列代码,用以表示电容的具体参数和特性。以下是如何解读
    的头像 发表于 01-13 14:14 1430次阅读

    电容量对比其它品牌有什么区别

    尺寸设备的电容的10倍。这得益于先进的制造工艺和陶瓷材料,使得电容器能够在保持小型化的同时实现高电容
    的头像 发表于 01-09 14:32 973次阅读

    贴片电容的电压表示方法

    贴片电容的电压表示方法主要通过其编码系统来体现。每个
    的头像 发表于 12-16 14:37 1029次阅读
    <b class='flag-5'>村</b><b class='flag-5'>田</b><b class='flag-5'>贴片</b><b class='flag-5'>电容</b>的电压表示方法