0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

饱和吸收光谱的新型量子光学磁力计,确保核磁共振成像质量

MEMS 来源:MEMS 2024-05-28 09:19 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

核磁共振成像(MRI)扫描仪可以提供质量卓越的3D图像,但用于创建这些图像的强磁场存在扰动,可能会在扫描中引入误差和干扰。因此,MRI扫描仪需要经常校准以确保其成像质量。

此外,由于磁场的高度不稳定性,像螺旋序列这样可以缩短扫描时间的创新扫描方法是不可行的。从理论上而言,可以通过增加传感器来读取和映射磁场的变化,进而通过计算纠错来解决这个问题。然而,在实践中,由于电子传感器和电缆中的金属会产生干扰,这种方法实际难以实现。

据麦姆斯咨询报道,为了解决上述问题,丹麦磁共振研究中心(DRCMR)和哥本哈根大学尼尔斯-玻尔研究所(NBI)的研究人员开发了一种基于饱和吸收光谱的新型量子光学磁力计,能够测量强磁场,并有望延长MRI扫描仪的使用寿命,同时提高其质量并降低成本。该量子光学磁力计原型目前已在丹麦磁共振研究中心的Hvidovre医院投入使用。

该量子光学磁力计基于铯D₂谱线的极端角动量饱和吸收光谱。它有四个独立的小型磁传感器组成,可分布在MRI扫描仪中。其中一个探头位于磁场范围之外,起到控制作用。该系统通过光纤电缆向MRI扫描仪中的四个磁传感器发送激光。

2313303a-1c43-11ef-b74b-92fbcf53809c.jpg

光学探头组件的分解图

在磁传感器内部,光穿过一个盛有铯气体的小玻璃容器。在一定频率下,气体吸收光并在铯原子中产生共振。铯原子中的电子在吸收光子时会产生更大的振荡,当电子回原位时,光子又会重新发射出去。随着光变暗,铯蒸气会变亮。如果铯暴露在磁场中,光谱频率将会根据磁场的强度而变化。

当磁场发生扰动时,磁传感器会映射出磁场中扰动的位置,并记录扰动如何影响磁场强度。由此产生的数据可用于识别MRI扫描中的错误。未来,还可以根据四个磁传感器收集的数据对干扰和错误图像进行修正,以确保MRI成像的准确性。

该量子光学磁力计的主要设计者Hans Stærkind说:“当激光以适宜的频率穿过气体时,光与铯原子中的电子会产生共振。但是,当气体暴露在磁场中时,发生共振的频率(或波长)则会发生变化。”

“通过这种方式,我们可以找出正确的频率来测量磁场强度。这个过程完全由接收设备以闪电般的速度自动完成。”Hans Stærkind补充道。

231d98cc-1c43-11ef-b74b-92fbcf53809c.jpg

量子光学磁力计利用激光和气体来测量磁场

该量子光学磁力计能够提供连续读数、高采样率以及百万分之一(ppm)范围内的灵敏度和准确度。所有电子元件和光学元件都集成在一个19英寸的机架上,结构紧凑、移动方便且坚固耐用。磁传感器采用光纤耦合,由非金属元件制成,可轻松安全地安装在7T MRI扫描仪内部。

2321986e-1c43-11ef-b74b-92fbcf53809c.jpg

量子光学磁力计原型

研究人员通过测量两种不同的MRI成像序列,展示了该量子光学磁力计的性能。为了验证该原型系统在医疗MRI中的潜在应用,研究人员展示了如何使用它来检测MRI扫描仪梯度线圈系统中的缺陷。

在制造量子光学磁力计之前,研究人员对铯原子的系数进行了高精度测量,从而使其能够以ppm的精度通过光学方式推断磁场。

“我们已经证明了该方法的理论可行性,现在又验证了它在实践中的可行性。”Stærkind说道,“目前,我们所制备的这个量子光学磁力计原型,基本上可以在不干扰MRI扫描仪的情况下完成测量目标。”

Stærkind表示,该量子光学磁力计还需要进行微调,从而使MRI扫描更便宜、更好用、更快捷。

“随着时间和技术的发展,MRI扫描仪将会生成质量优异的图像。”Stærkind说道,“但是在该量子光学磁力计的帮助下,我们有望利用相同的时间生成更优异的图像,或者利用更少的时间获得相同的成像质量。或者我们还可以制造一种更便宜的扫描仪,虽然可能存在一定误差,但在该量子光学磁力计的帮助下仍能提供较好的成像质量。”

到目前为止,该量子光学磁力计原型还在正常运行。研究人员计划进一步改进该原型,使其测量更加精确,并增强其识别扫描错误的能力。

虽然该量子光学磁力计最初的目标市场是MRI研究机构,但Stærkind研究团队希望大型MRI制造商能够长期采用这项新技术,并最终将量子光学磁力计直接集成在新的MRI扫描仪中。

“一旦该量子光学磁力计原型在2.0版本中得到优化改进,并在医院实际扫描大量数据后证明了其成像质量,我们将见证它的发展前景。”Stærkind表示,“该量子光学磁力计必将有潜力以一种独特的方式改进MRI成像质量,从而使医生和患者都能受益。”

这项研究成果目前已发表在PRX Quantum期刊和Physical Review X期刊上。



审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电子传感器
    +关注

    关注

    2

    文章

    30

    浏览量

    16603
  • 磁传感器
    +关注

    关注

    5

    文章

    264

    浏览量

    24549
  • 光纤耦合
    +关注

    关注

    0

    文章

    20

    浏览量

    8286
  • 磁力计
    +关注

    关注

    1

    文章

    72

    浏览量

    21758

原文标题:新型量子光学磁力计,助力提升核磁共振成像质量与速度

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    高精度电流传感器在核磁共振(MRI)中的应用

    在医疗影像学技术持续迭代的进程中,核磁共振(MRI)凭借无辐射、高分辨率的核心优势,已成为临床诊断中不可或缺的核心技术手段。MRI 系统通过磁场与无线电波的协同作用构建人体内部结构影像,其成像质量
    的头像 发表于 12-03 09:33 67次阅读
    高精度电流传感器在<b class='flag-5'>核磁共振</b>(MRI)中的应用

    浅谈HMC5883L和QMC5883P磁力计的区别及STM32F103驱动

    HMC5883L和QMC5883P是两款硬件兼容但软件不兼容的磁力计芯片,主要区别在于寄存器地址、设备地址和磁场方向定义。本文提供了HMC5883L的初始化代码和寄存器配置说明,包括采样率、量程设置
    的头像 发表于 08-30 10:10 5886次阅读
    浅谈HMC5883L和QMC5883P<b class='flag-5'>磁力计</b>的区别及STM32F103驱动

    原子吸收光谱仪如何选配UPS不间断电源?优比施UPS电源专业解析

    在实验室精密仪器使用中,稳定可靠的电力供应至关重要。原子吸收光谱仪作为实验室常用的大型精密仪器,对电源质量有着极高要求。一旦遭遇突然断电或电压波动,不仅会影响测试结果准确性,更可能造成仪器损坏。那么
    的头像 发表于 08-12 10:57 355次阅读
    原子<b class='flag-5'>吸收光谱</b>仪如何选配UPS不间断电源?优比施UPS电源专业解析

    一种基于红外吸收光谱技术的免校准气体传感芯片

    近日,天津大学精密仪器与光电子工程学院的光子芯片实验室研发了一种基于红外吸收光谱技术的免校准气体传感芯片,成果获得中国发明专利(ZL202411675536.3)授权。
    的头像 发表于 07-29 10:32 724次阅读
    一种基于红外<b class='flag-5'>吸收光谱</b>技术的免校准气体传感芯片

    瞬态吸收光谱数据处理、拟合与分析-Ⅰ

    图1:本文所述飞秒宽带瞬态吸收仪器的示意图。 摘要 瞬态吸收光谱(Transient Absorption, TA)是一种强大的时间分辨光谱技术,通过检测材料体系吸收光谱的变化来追踪激
    的头像 发表于 06-23 09:16 1345次阅读
    瞬态<b class='flag-5'>吸收光谱</b>数据处理、拟合与分析-Ⅰ

    医疗影像设备通信升级:核磁共振机中的PROFIBUS转EtherCAT实践

    在医疗器械领域,尤其是核磁共振机这类高精度设备的控制系统中,工业通信网络的性能至关重要。PROFIBUS和EtherCAT作为两种常用的工业通信协议,在核磁共振机的自动化控制中发挥着关键作用。 在这
    的头像 发表于 06-19 15:16 406次阅读
    医疗影像设备通信升级:<b class='flag-5'>核磁共振</b>机中的PROFIBUS转EtherCAT实践

    瞬态吸收光谱与时间分辨圆偏振发光技术的结合协助科学家深入理解能量与手性协同动力学

    纤维材料(SNFs)。并且将飞秒时间分辨圆偏振发光(fs-TRCPL)光谱技术以及飞秒时间分辨瞬态吸收光谱相结合,实时捕捉到近红外圆偏振发光超分子纳米纤维中FRET与圆偏振发光产生的协同超快动力学,揭示了FRET和CPL发射之间的协同相互作用并阐明了能量转移实现
    的头像 发表于 05-19 07:59 782次阅读
    瞬态<b class='flag-5'>吸收光谱</b>与时间分辨圆偏振发光技术的结合协助科学家深入理解能量与手性协同动力学

    智能光学计算成像技术与应用

    智能光学计算成像是一个将人工智能(AI)与光学成像技术相结合的前沿领域,它通过深度学习、光学神经网络、超表面光学(metaphotonics
    的头像 发表于 03-07 17:18 1191次阅读
    智能<b class='flag-5'>光学</b>计算<b class='flag-5'>成像</b>技术与应用

    宾夕法尼亚大学:开发出揭示亚原子信号的新型量子传感技术

    自 20 世纪 50 年代以来,科学家们一直利用无线电波来揭示未知材料的分子 “指纹”,帮助完成各种任务,如用核磁共振成像仪扫描人体和在机场检测爆炸物。 然而,这些方法依赖的是数万亿原子发出的平均
    的头像 发表于 03-05 18:31 575次阅读
    宾夕法尼亚大学:开发出揭示亚原子信号的<b class='flag-5'>新型</b><b class='flag-5'>量子</b>传感技术

    超快飞秒光学新工具!单腔双光梳的气体光谱应用前景

    单腔双光梳技术是近年来光学领域备受瞩目的研究方向之一。这项技术不仅在光谱分析、激光测距、厚膜检测、泵浦探测等领域具有重要应用前景,还为研究精密光谱学、量子光学、光子学等提供了全新的研究
    的头像 发表于 01-23 14:03 695次阅读
    超快飞秒<b class='flag-5'>光学</b>新工具!单腔双光梳的气体<b class='flag-5'>光谱</b>应用前景

    超快飞秒光学新工具!单腔双光梳的精确测距应用前景

    单腔双光梳技术是近年来光学领域备受瞩目的研究方向之一。这项技术不仅在光谱分析、激光测距、厚膜检测、泵浦探测等领域具有重要应用前景,还为研究精密光谱学、量子光学、光子学等提供了全新的研究
    的头像 发表于 01-23 13:58 783次阅读
    超快飞秒<b class='flag-5'>光学</b>新工具!单腔双光梳的精确测距应用前景

    超快飞秒光学新工具!单腔双光梳的厚膜检测应用前景

    单腔双光梳技术是近年来光学领域备受瞩目的研究方向之一。这项技术不仅在光谱分析、激光测距、厚膜检测、泵浦探测等领域具有重要应用前景,还为研究精密光谱学、量子光学、光子学等提供了全新的研究
    的头像 发表于 01-23 13:56 628次阅读
    超快飞秒<b class='flag-5'>光学</b>新工具!单腔双光梳的厚膜检测应用前景

    超快飞秒光学新工具!单腔双光梳的泵浦探测应用前景

    单腔双光梳技术是近年来光学领域备受瞩目的研究方向之一。这项技术不仅在光谱分析、激光测距、厚膜检测、泵浦探测等领域具有重要应用前景,还为研究精密光谱学、量子光学、光子学等提供了全新的研究
    的头像 发表于 01-23 13:54 733次阅读
    超快飞秒<b class='flag-5'>光学</b>新工具!单腔双光梳的泵浦探测应用前景

    原子吸收光谱的原理的新思考及应用

    当电子束或X射线白光照射到固体物质时能发射特征X射线谱线,这是电镜能谱元素分析或X荧光元素分析的基本原理。这些元素特征光谱与元素核外电子能级差相关。这些发射的光谱属于X射线,波长在0.1至1nm,其
    的头像 发表于 01-21 10:09 1170次阅读
    原子<b class='flag-5'>吸收光谱</b>的原理的新思考及应用

    十轴姿态传感器模块 | 集成加速度、陀螺仪、磁力计,自带BLE5.0蓝牙

    海凌科全新推出HLK-AS2001十轴姿态传感器模块,集成加速度、陀螺仪和磁力计,自带BLE5.0蓝牙,开发简单,应用广泛。什么是十轴姿态传感器模块?HLK-AS2001十轴姿态传感器模块是海凌科
    的头像 发表于 01-06 12:47 1499次阅读
    十轴姿态传感器模块 | 集成加速度<b class='flag-5'>计</b>、陀螺仪、<b class='flag-5'>磁力计</b>,自带BLE5.0蓝牙