0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种多波段与双透镜集成的红外探测器气密性封装组件

MEMS 来源:MEMS 2024-03-14 09:32 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

多光谱红外探测技术能丰富遥感载荷的图像信息,提高图像的反演精度,而多透镜和多波段探测器集成封装设计能缩小光学载荷体积,同时节约制冷资源。多波段红外焦平面集成封装技术是实现多波段多通道红外探测技术工程化应用的前提。并且为了降低光学系统体积并有效利用制冷资源,透镜常与红外焦平面封装集成于同一气密组件中,这对组件封装提出更高的要求。

据麦姆斯咨询报道,近期,中国科学院上海技术物理研究所的科研团队在《光学学报》期刊上发表了以“多通道红外中长波芯片与双透镜集成组件封装技术”为主题的文章。该文章第一作者为朱海勇。

本文设计并研制了一种多波段与双透镜集成的红外探测器气密性封装组件,并分别从结构设计、组件多波段芯片焦平面配准、滤光片低温低形变支撑、透镜光学配准和低温形变控制以及组件背景辐射杂散抑制等封装技术进行系统研究,对航天用红外多波段集成组件的小型化和集成化有一定的借鉴意义。

组件封装

器件及探测器排布

根据系统设计要求,中长波红外组件分别由3个红外通道5.8~6.7 μm、6.75~7.15 μm和7.24~7.6 μm组成。探测器采用光导型碲镉汞红外探测芯片,工作温度为85 K,每个光谱通道探测器由4个光敏元成“一字型”排列,光敏元尺寸为0.056 mm × 0.056 mm。组件红外探测器敏感元位置排列和敏感元尺寸如图1所示。

85850bc6-e197-11ee-a297-92fbcf53809c.jpg

图1 光敏元排布及尺寸图

图1为三个红外探测光敏元的排列模型。由于组件的三个工作波段之间有光谱重合,这将会影响组件光谱,而光谱的形状和带外响应将直接影响到图像的反演精度。因此为了减小波段间的串扰,将临近的波段错开,波段按如图1所示排列。从左至右L2、L3和L1分别代表6.75~7.15 μm、7.24~7.6 μm和5.8~6.7 μm波段。

多个通道组装在一个组件内,光敏元的位置必须符合光学配准,定位的不准同时会引入空间光谱串音。拼接芯片需采用高精度对位及定位技术,需保证沿光轴方向精确定位,所有敏感元相对于X轴和Y轴偏转≤0.01 mm,任意两个敏感元表面相对于XZ平面的距离变化范围≤0.03 mm。

探测器组件对器件封装的精度提出了更高的要求,为了能够达到高精度对准,采用光刻的方法在过渡电极板上做十字对准线,对准线的宽度不大于0.02 mm,与X、Z轴不平行度小于1°。探测器在安装在管壳内时,以十字对准线为基准固定好。并通过大视场高倍率投影仪严格控制探测器拼接精度实现XY平面高精度定位和配准,采用在低温胶固化周期内多次复检并实时调整保证最终精度。通过超长工作距离Z轴显微镜,检测光敏元与基准面的高度差。

组件结构设计

85954dce-e197-11ee-a297-92fbcf53809c.jpg

图2 组件结构设计

图2为组件的封装结构设计,组件分别由底座、宝石电极板、透镜支撑、透镜保护环、密封压座、密封环、透镜1、透镜2、光阑、滤光片、滤光片支撑环和导热片In组成。组件的总质量不超过65克,组件封装完成后在密封压座上对位安装冷光阑。组件采用气密密封的封装形式,该组件结构的特点为:采用宝石电极板实现电学信号的输出,外壳零件采用金属加工制备、各部件间以螺纹配合螺丝连接,组件内具有双层光阑结构,通过密封压座与透镜1间的铟挤压工艺实现组件的密封,透镜支撑包含光阑定位面、透镜2定位面和透镜1定位面。

低应力滤光片支撑设计

中波组件在滤光片上表面光斑R大小为0.1 mm,在光阑上表面光斑R大小为0.074 mm,光阑孔设计尺寸为0.38 mm,因此,为了实现光阑不挡光,光阑对中工艺偏差需要控制在0.01 mm以内,为了不引起空间光谱串音,滤光片划片工艺偏差控制在0.020 mm以内,滤光片对中工艺偏差控制在0.03 mm以内。滤光片通过拼接固定在光阑上安装在组件管壳内,滤光片下表面至光敏面的高度为0.3 mm。为了降低杂散光和光串概率,对滤光片支架内外表面进行发黑处理。并且光阑孔的大小按照光学系统的视场角计算得到,考虑到对中时难免存在偏差,因此在理论计算值的基础上适当放余量,最终的到光阑孔的尺寸。

滤光片支架与滤光片通常采用胶粘接固定,滤光片靠近边缘位置处的镀膜区域不可避免存在与胶接触,成为粘接面。其次,滤光片基体的热膨胀系数与滤光片支架材料热膨胀系数存在差异时,滤光片膜层在低温工作时将承受低温应力。试验表明这种热失配引起的应力会导致滤光片光谱特性的变化,从而引起光谱的变形。

为减小低温下应力和形变,在滤光片支架的边缘设计有四条应力释放槽,如图3所示。在采用应力槽设计后,滤光片支架的形变得到明显的改善,这也对滤光片在低温下形位偏移的改善有一定作用。并且为了减小滤光片支架低温形变,滤光片支架采用低膨胀系数的合金材料,滤光片两端通过耐低温胶实现与滤光片支撑框固定,并严格控制耐低温胶量,以防止耐低温胶渗入滤光片底面和滤光片支架上面,减小低温下滤光片组件由于热失配引起的形变应力。

859f867c-e197-11ee-a297-92fbcf53809c.jpg

图3 滤光片支架形变曲线

谱形控制是多通道多波段集成组件的关键技术。在集成多通道芯片封装组件中,由于芯片间的距离较小,波段间串扰不可避免,主要为光学串扰。由几何光学分析可知,缩小滤光片与芯片距离能有效降低光学串扰,组件采用将滤光片以“桥”式结构安装至芯片近表面。其次散射是造成光学串扰的因素之一,入射光经过零件表面的途径分为反射、透射、吸收和散射。为了降低零件表面散射,首先对透镜和滤光片表面膜层透过率和吸收率进行严格控制;其二,零件表面的散射与零件表面的粗糙度RMS有关,对零件表面进行抛光处理,同时,在零件组装前对零件表面进行镜检和清洁。其三,减小低温下光学零件表面形变可以有效减小光学余量,从而减小散射面积。

85a5e7ce-e197-11ee-a297-92fbcf53809c.jpg

图4 组件低温下的(a)光谱曲线(b)定量化光谱曲线

双透镜光学配准及力热分析

多个通道组装在一个管壳内,其相应位置必须符合光学配准,定位的不准同时会引入空间光谱串音。拼接芯片采用高精度对位及定位技术,光敏元首先通过大视场投影仪高倍放大,沿光轴方向精确定位,保证所有敏感元相对于X轴和Y轴偏转≤0.01 mm,任意两个敏感元表面相对于XZ平面的距离变化范围≤0.03 mm。电极板与透镜支撑、管壳底进行对中装配时,在大视场投影仪下,用专用对中夹具对中,实现光敏元与透镜支撑对准,保证平行光敏元中心与双透镜中心的配准。

透镜由于光滑容易滑动,且易碎不适于通过打孔螺丝的形式进行机械固定,透镜2的固定采用胶结固定,在起到固定作用的同时,又不会发生机械和光学特性等的变化。透镜1则是采用密封压座、软金属和螺丝进行固定,密封压座与透镜通过软金属接触。

组件封装的漏率是密封过程的一个指标,组件装配完成后采用真空除气,充N₂保护气体后,金属圈密封及螺丝处点胶加固封装形成最后的组件,利用灵敏度达到2×10⁻¹⁰ Torr.L/s氦质谱检漏仪对组件的密封进行检测,并通过软金属实现密封压座和透镜结合部位密封,实现组件的密封性优于8×10⁻⁷ Torr.L /s技术指标。

85b3c74a-e197-11ee-a297-92fbcf53809c.jpg

图5 (a)压力下镜片1内表面形变(b)温度荷下镜片1内表面形变

由于透镜采用低温冷光学设计,且为了保证探测器工作环境,对组件内进行充N₂保护气,组件随载荷发射后外部为真空环境,透镜1内外面存在压差,这将导致透镜1表面受压力和低温的影响导致变形,透镜曲率发生变化从而影响红外光学系统的成像质量。对比图5(a)和(b)可以得出结论:组件在充1个大气压下透镜1内表面分别在气压和低温下的形变方向相反,且相较于1个大气压差导致的透镜1的形变,低温下的透镜1的形变占据主导地位,但仍可以看到调节组件内气压来缓解透镜1的低温下形变的可能。

图6为透镜1内外表面中心在组件充N₂保护气气压下的形变趋势图。从图6可以看到,随着N₂保护气气压的增加,透镜1内外表面中心的形变量都随之减小,这表明增加N₂保护气气压有利于减小低温下透镜的形变。且透镜1内外表面中心的形变量与N₂保护气气压近似成线性关系。

85c1a0ae-e197-11ee-a297-92fbcf53809c.jpg

图6 透镜1表面中心随组件气压变形曲线

为了分析透镜形变对红外相机的成像的影响,分别对组件透镜内外变形表面以Zernike多项式拟合,再结合某一红外光学系统并并以调制传递函数(MTF)和波像差作为成像评价指标进行分析。

组件杂散光分析

对红外光学系统进行杂散光分析和抑制是保证光学系统成像质量的前提,如果对组件的杂散光抑制不足,严重时将导致组件失效。如Meteosat-5/7系列成像仪曾由于杂散光抑制不足导致相机关机。集成多波段红外探测器组件作为红外光学载荷的一部分,且组件中的许多表面靠近探测器,能被探测器直接“看到”,在杂散光分析时需要重点关注。

图7(a)~(c)是对组件零件关键表面的杂散光分析,分别为光阑1、透镜1、透镜2、透镜支撑、光阑2、滤光片支架。它们的表面辐射均可以通过透射、一次反射或散射到达探测器表面。

85cf7d0a-e197-11ee-a297-92fbcf53809c.jpg

图7 组件杂散光分析

产品及主要性能指标

封装完成后的组件进行了一系列的环境试验性试验及低温老炼试验考核,包鉴定级正弦和随机力学振、85~295 K温度循环和1500 h的老练试验,组件在可靠性试验完成后,对组件的漏率、器件性能进行复测,没有发生芯片脱落、电极开路等失效故障,组件无一失效。组件筛选前后信号和噪声变化如图8所示,信号和噪声变化率均低AOS于10%,均通过了力学和温度的试验。

86185ed0-e197-11ee-a297-92fbcf53809c.jpg

图8 环境试验前后信号与噪声对比图

通过多通道红外焦平面拼接技术、低形变多滤光片支撑接结构设计和透镜形变控制等关键技术研究,对组件进行高精密研制,得到了高性能的多光谱集成的红外探测器组件。电学性能测试结果表明探测器工作正常,组件性能正常。

结论

多波段和多通道红外探测器为空间遥感提供更丰富的遥感信息,而多透镜与探测器集成化可以减小载荷体积和节约制冷资源,多波段多通道红外探测器与多透镜集成化将成为组件封装发展趋势之一。设计并研制一种集成多通道红外探测器和透镜的红外封装组件,对组件多波段不同焦平面的拼接、光学透镜面型控制和共轴配准、滤光片支架低形变控制、防光串和组件背景辐射杂散光抑制等关键技术进行了重点研究。组件的3波段不同焦平面探测器拼接精度优于±5 μm,焦平面探测器分别与滤光片和透镜的光学配准精度偏差优于±8 μm和±15 μm,滤光片支架和透镜在低温的形变得到改善,低温下的透镜形变对光学成像质量的影响可以忽略;多波段间光学串扰低于6%,串音低于5%;解决了多波段与双透镜集成红外探测器组件的高精度配准、滤光片支架低形变控制、透镜面型控制以及串扰的小型化高性能的探测器封装问题,并得到成功应用。

论文链接:

DOI: 10.3788/AOS232011




审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 红外探测器
    +关注

    关注

    5

    文章

    310

    浏览量

    18946
  • 滤光片
    +关注

    关注

    2

    文章

    88

    浏览量

    11382
  • 芯片封装
    +关注

    关注

    13

    文章

    604

    浏览量

    32080
  • RMS
    RMS
    +关注

    关注

    2

    文章

    158

    浏览量

    37491
  • 杂散光
    +关注

    关注

    0

    文章

    9

    浏览量

    2664

原文标题:多通道红外中长波芯片与双透镜集成组件封装技术

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    岳信仪器告诉你:什么是气密性检测设备?

    的“无形卫士”,在出厂前为产品质量筑起道坚实防线。什么是气密性检测设备?气密性检测设备,顾名思义,是一种用于检测产品或部件是否存在泄漏的精密仪器。它的核心功能是评
    的头像 发表于 11-20 16:07 206次阅读
    岳信仪器告诉你:什么是<b class='flag-5'>气密性</b>检测设备?

    快问快答:气密性检测到底是怎么做的?如何定义气密性测试标准

    在制造业质量管控体系中,「气密性检测」是项极为关键的工序。无论是新能源汽车电池壳体、家电防水结构,还是医疗设备封装模块,都必须通过严格的气密测试来确保产品在工作环境下不漏气、不漏水。
    的头像 发表于 11-11 11:56 296次阅读
    快问快答:<b class='flag-5'>气密性</b>检测到底是怎么做的?如何定义<b class='flag-5'>气密性</b>测试标准

    什么是气密性检测

    、机械应力损伤,最终导致元件功能丧失。什么是气密性检测气密性检测,亦称密封测试,是一种用于评估产品外壳或封装结构防止气体(包括空气、水汽及
    的头像 发表于 11-05 14:32 200次阅读
    什么是<b class='flag-5'>气密性</b>检测

    汽车散热气密性检测仪的原理

    原理。检测过程通常分为三个阶段:充气、稳压和检测。在充气阶段,汽车散热气密性检测仪会将定压力的气体充入汽车散热内部。这个过程就像是给气球打气,气体通过专门的充气
    的头像 发表于 07-08 11:40 461次阅读
    汽车散热<b class='flag-5'>器</b><b class='flag-5'>气密性</b>检测仪的原理

    VirtualLab:通用探测器

    追迹结果)。请注意,这将只适用于单模式,否则相干求和被禁用。 探测器附加组件 - 电磁场量 附加组件一种多功能工具,允许基于入射场数
    发表于 06-12 08:59

    红外探测器像元尺寸怎么选

    像元尺寸指的是在红外探测器芯片焦平面阵列上,每个像元的实际物理尺寸,通常以微米(μm)为单位。常见的规格有8μm、12μm、17μm、25μm等。像元尺寸直接影响着红外热成像组件的体积
    的头像 发表于 04-01 16:43 1093次阅读
    <b class='flag-5'>红外</b><b class='flag-5'>探测器</b>像元尺寸怎么选

    VirtualLab应用:医用衍射透镜

    Zemax OpticStudio®导入个眼内衍射透镜设计到VirtualLab Fusion中,用实际的二元结构对其进行建模,并优化结构高度以获得更好的性能。 通用探测器 本用例介绍了通用
    发表于 04-01 09:37

    深入了解气密性芯片封装,揭秘其背后的高科技

    在半导体技术日新月异的今天,芯片封装作为连接设计与制造的桥梁,其重要日益凸显。而气密性芯片封装,作为封装技术中的
    的头像 发表于 03-28 11:43 1286次阅读
    深入了解<b class='flag-5'>气密性</b>芯片<b class='flag-5'>封装</b>,揭秘其背后的高科技

    红外探测器的分类介绍

    红外探测器,英文名称为Infrared Detector,其核心功能在于将不可见的红外辐射转变为可测量的电信号。红外辐射,作为电磁波的一种
    的头像 发表于 03-27 15:33 1985次阅读
    <b class='flag-5'>红外</b><b class='flag-5'>探测器</b>的分类介绍

    连接气密性检测的重要

    连接气密性是电气系统稳定运行的基石,尤其在严苛环境下至关重要。精诚工科作为在气密性检测领域深耕多年的专家,为您提供专业、高效的连接气密性
    的头像 发表于 03-17 11:01 599次阅读
    连接<b class='flag-5'>器</b><b class='flag-5'>气密性</b>检测的重要<b class='flag-5'>性</b>

    红外探测器晶圆级、陶瓷级和金属级三封装形式有什么区别?

    红外探测器作为红外热像仪的核心部件,广泛应用于工业、安防、医疗等多个领域。随着技术的不断进步,红外探测器
    的头像 发表于 03-05 16:43 1035次阅读
    <b class='flag-5'>红外</b><b class='flag-5'>探测器</b>晶圆级、陶瓷级和金属级三<b class='flag-5'>种</b><b class='flag-5'>封装</b>形式有什么区别?

    机器人气密性检测:揭秘气密性测试仪的高效应用

    在科技飞速发展的今天,机器人已经成为众多领域的得力助手。它们不仅在生产线上忙碌地工作,还在医疗、科研、服务等多个领域发挥着重要作用。然而,为了确保机器人的稳定运行和高效性能,其气密性检测成为了
    的头像 发表于 02-25 14:00 697次阅读
    机器人<b class='flag-5'>气密性</b>检测:揭秘<b class='flag-5'>气密性</b>测试仪的高效应用

    LED显示屏气密性检测仪的使用小技巧

    LED显示屏作为现代显示技术的核心组件,其稳定性和耐用至关重要。气密性检测仪作为一种专业的检测设备,在确保LED显示屏质量方面发挥着重要作用。本文将详细介绍如何正确使用LED显示屏
    的头像 发表于 01-08 13:36 833次阅读
    LED显示屏<b class='flag-5'>气密性</b>检测仪的使用小技巧

    用于光波导系统的均匀探测器

    提供了均匀探测器,可以进行所需的研究。在本文件中,我们将演示可用的选项以及如何操作均匀探测器。 **案例演示 ** **均匀
    发表于 12-20 10:30

    汽车头灯灯具气密性检测仪:直压法的实用

    ,其中直压法以其简单、高效的特点成为广泛采用的一种检测方法。直压法是一种通过向被测物体内部充入定压力的气体,然后保持段时间,检测压力的变化情况来判断
    的头像 发表于 12-07 11:52 575次阅读
    汽车头灯灯具<b class='flag-5'>气密性</b>检测仪:直压法的实用<b class='flag-5'>性</b>