0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于计算设计的超鲁棒性应变传感器,实现软体机器人的感知和自主性

MEMS 来源:MEMS 2024-03-07 09:50 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

柔性应变传感器对软体机器人的感知和自主性至关重要。然而,它们的可变形体和动态驱动在预测传感器制造和长期鲁棒性方面带来了挑战。这需要精确的传感器建模和在应变下良好控制的传感器结构变化。

据麦姆斯咨询报道,近期,新加坡国立大学(National University of Singapore)的研究人员提出了一种计算传感器设计,其特点是微褶皱策略中的编程裂纹阵列。通过控制自定义结构,传感性能变得高度可调,并且可以通过物理模型精确建模。此外,该传感器在噪声干扰(50%应变)、间歇性循环载荷(100,000次循环)和动态频率(0-23 Hz)等各种苛刻的条件下,仍能保持强大的响应能力,满足从宏观到微观各种规模的软体机器人。相关研究成果以“Computational design of ultra-robust strain sensors for soft robot perception and autonomy”为题发表在Nature Communications期刊上。

在这项研究中,研究人员采用环境稳定的单壁碳纳米管(SWNT)来制备压阻应变传感器。他们开发了一种两阶段设计,结合了“微褶皱中的编程裂纹阵列”的特征,得到了简称为PCAM的传感器。首先,通过精确的传感器制造和规定的结构演变来实现传感器建模。基本上,通过激光辅助制造,用户定义的叉指型裂纹阵列被编程在压阻应变传感器的微褶皱内,显示出高度可控的裂纹扩展行为和可调谐的传感器特性。通过输入包括裂纹密度和微褶皱特征在内的传感器结构参数,建立相应的有限元分析(FEA)模型,以引导包括机械和电学演化的双重物理场,并高精度模拟不同传感器的传感曲线。然后,通过确定的裂纹扩展模式和微褶皱特征,实现了传感器的良好鲁棒性。

c7921da8-dbd7-11ee-a297-92fbcf53809c.jpg

计算引导的PCAM传感器设计

本文所开发的PCAM传感器在噪声干扰(高达50%的应变)、间歇性循环载荷(100,000个循环)和动态操作频率(0-23 Hz)等各种具有挑战性的工作条件下,均能保持稳健的传感响应。这种鲁棒传感器极大地增强了集成软体机器人的感知能力,为监测其高自由度身体变形和多模态驱动行为提供了稳定的传感信号,确保了构建预测模型时的高学习效率。

c7a10728-dbd7-11ee-a297-92fbcf53809c.jpg

PCAM传感器的机械稳定性

PCAM传感器在软体机器人上的有效集成,构建了复杂软体爬行机器人的高级机器智能。对于当前在软机器人或执行器上的机器学习(ML)应用,应用目标主要是软手套或软夹具。为了捕捉它们的运动,毫无疑问要在所有抓爪或手套手指上安装传感器。

然而,对于本研究中的爬行折纸机器人,传感器位置有40多种可能性,这对有效捕捉其高自由度和多模态运动提出了挑战。为了实现机器人自主性,研究人员开发了一个高分辨率传感器网络(优化机器人身上的传感器数量和位置),以收集机器人折纸运动最具代表性的关键信息。因此,简单的人工神经网络框架和不到40个训练样本足以生成预测模型,并成功实现了软爬行机器人的高级机器人自主性(即机器人轨迹预测和地形高度感知)。

c7b6fa74-dbd7-11ee-a297-92fbcf53809c.jpg

集成PCAM传感器的不同规模的软体机器人

c7ca3f8a-dbd7-11ee-a297-92fbcf53809c.jpg

用于机器人轨迹预测的智能传感器网络

总而言之,研究人员开发了一种计算应变传感器设计,其基于微褶皱策略中的编程裂纹阵列,克服了预测制造、用户特定参数和超稳定性的严格要求。通过控制用户自定义的参数,即裂纹密度和收缩率,PCAM传感器的应变灵敏度因数和线性工作窗口是高度可调的,并且可以用有限元分析工具对其传感行为进行高精度建模。PCAM传感器在噪声、间歇性和动态操作等各种具有挑战性的工作条件下,均表现出优异的机械鲁棒性。这些传感器可以进一步集成到跨越宏、微观尺度的各种软机器人中,无论机器人规模如何,都能保持一致和可靠的感知。最后,将人工神经网络算法引入到集成传感器的折纸机器人中,实现了机器自主导航、高精度轨迹预测和周围感知导航。

从未来的角度来看,该应变传感器设计对从折纸机器人到气动机器人以及从宏观到微观的各种软体机器人表现出高度的适应性。这些高度适应性的集成传感器的软体机器可以应用于各种环境,使它们具有增强的感知功能和机器智能能力。这种多功能性为各种任务提供了优势,例如机器人可以在有限的物理空间中操作(例如化学品泄漏和货物运送),在未知环境中导航,以及能够远程控制不受束缚的机器人。此外,可以开发更先进的机器学习算法来连接和管理多个集成传感器的机器人,为实现更高的软体机器人群体智能提供机会。




审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 碳纳米管
    +关注

    关注

    1

    文章

    158

    浏览量

    17661
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136224
  • 软体机器人
    +关注

    关注

    1

    文章

    114

    浏览量

    12087
  • 应变传感器
    +关注

    关注

    0

    文章

    69

    浏览量

    5031
  • 柔性传感器
    +关注

    关注

    1

    文章

    114

    浏览量

    4755

原文标题:基于计算设计的超鲁棒性应变传感器,实现软体机器人的感知和自主性

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    RK3576机器人核心:三屏异显+八路摄像头,重塑机器人交互与感知

    、远程作业机器人、特种检测机器人· 多摄像头输入:通过多路摄像头无死角监控作业现场,实现精准操作与安全监控。· 多屏显示:将不同视角的画面、传感器数据、控制界面分别显示,帮助操作员远程
    发表于 10-29 16:41

    机器人竞技幕后:磁传感器芯片激活 “精准感知力”

    机器人获得更接近人类的触觉反馈。 赛事首席技术官王博士表示:“当机器人开始‘感知’而非‘计算’环境时,真正的智能化竞技时代才算到来。” 未来,磁
    发表于 08-26 10:02

    详细介绍机场智能指路机器人的工作原理

    机场智能指路机器人主要依靠感知系统、定位系统、导航系统、智能交互系统和运动系统协同工作,来实现为旅客准确指路和提供服务的功能,以下是其详细工作原理: 感知系统
    发表于 05-10 18:26

    【「# ROS 2智能机器人开发实践」阅读体验】视觉实现的基础算法的应用

    的有效途径。 结语 本书第7章和第8章内容系统强,从基础理论到代码实践,为读者提供了机器人视觉与SLAM的完整知识框架。未来,我计划结合书中案例,进一步探索多传感器融合、自主导航等
    发表于 05-03 19:41

    VirtualLab Fusion应用:光栅的分析与优化

    一个场景,在这个场景中,我们分析了二元光栅的偏振依赖,并对结构进行了优化,使其在任意偏振角入射光下均能表现良好。 倾斜光栅的优化 这个用例演示了一个具有稍微变化的填充因子的倾
    发表于 02-19 08:54

    清华大学:软体机器人柔性传感技术最新研究进展

    随着机器人技术的发展,配备柔性传感功能的软体机器人在医疗辅助康复、水下资源勘探、陆地灾难救援等领域发挥着重要作用,如何设计高性能柔性传感器
    的头像 发表于 02-14 14:31 1205次阅读
    清华大学:<b class='flag-5'>软体</b><b class='flag-5'>机器人</b>柔性<b class='flag-5'>传感</b>技术最新研究进展

    机器人“大脑+小脑”范式:算力魔方赋能智能自主导航

    和实时调整。 这种分工明确的架构不仅提高了机器人自主性和适应,还为机器人在复杂环境中的应用提供了更多可能。 一, 算力魔方 ® : 机
    的头像 发表于 01-20 13:35 936次阅读

    位移传感器机器人中的角色

    。位移传感器作为机器人感知系统的核心部件,其重要不言而喻。 位移传感器的基本原理 位移传感器
    的头像 发表于 01-19 09:47 932次阅读

    【「具身智能机器人系统」阅读体验】2.具身智能机器人的基础模块

    非常重要的地位。 先说这个自主机器人计算系统。计算系统是自主机器人的关键部件。自主机器人通过智能计算
    发表于 01-04 19:22

    《具身智能机器人系统》第10-13章阅读心得之具身智能机器人计算挑战

    阅读《具身智能机器人系统》第10-13章,我对具身智能机器人的工程实践有了全新认识。第10章从实时角度剖析了机器人计算加速问题。
    发表于 01-04 01:15

    自动驾驶中常提的是个啥?

    持稳定的运行能力,这是自动驾驶实现从技术验证到实际落地的关键要求。然而,这一概念对大多数人来说可能较为抽象,其在自动驾驶中的具体表现、技术实现
    的头像 发表于 01-02 16:32 8338次阅读
    自动驾驶中常提的<b class='flag-5'>鲁</b><b class='flag-5'>棒</b><b class='flag-5'>性</b>是个啥?

    【「具身智能机器人系统」阅读体验】2.具身智能机器人大模型

    ,能够利用\"思维链\"的技术将复杂任务分解为多个子任务,以渐进的方式解决问题。这不仅提高了任务的成功率,也显著增强了系统的,使得机器人可以更高效地应对复杂环境和多样化需求
    发表于 12-29 23:04

    【「具身智能机器人系统」阅读体验】1.初步理解具身智能

    重要。 书中还详细介绍了支持具身智能机器人的核心技术系统,包括自主机器人计算系统、感知系统、定位系统及规划和控制系统。 本书共分5个部分。 第1部分(第1章和第2章)介绍具身智能
    发表于 12-28 21:12

    【「具身智能机器人系统」阅读体验】+初品的体验

    提高机器人的自适应自主性,赋能机器人在多种场景中的应用。例如在家庭自动化领域,具身智能机器人能够感知
    发表于 12-20 19:17

    《具身智能机器人系统》第1-6章阅读心得之具身智能机器人系统背景知识与基础模块

    物理交互纳入智能系统的核心要素。 第3章是探讨机器人计算系统。这一章节详细阐述了自主机器人的软硬件架构。计算系统需要满足机器人任务对算法的精
    发表于 12-19 22:26