0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

“晶格负膨胀”实现长循环钠离子电池

清新电源 来源:新威NEWARE 2024-01-22 09:18 次阅读

【研究背景】

基于Ni两电子反应(Ni ^2+^ /Ni ^4+^ )的O3型层状正极材料具有较高的理论比容量,受到研究人员的广泛关注。然而,在脱出和嵌入大尺寸Na ^+^ 时会伴随着剧烈的相变,导致层间距的急剧收缩和膨胀,最终演变为严重的局部应变、裂纹和容量衰减。即使将电压范围缩短至2.0-4.0V,由O3-P3相变导致的晶格膨胀程度依然较大,限制了材料的电化学性能。

【工作简介】

近日,南开大学李福军教授等报道了正极材料Na0.9Ni0.32Zn0.08Fe0.1Mn0.3Ti0.2O2(ZT-NFM)在脱钠过程(2.0-4.0V)中的晶格负膨胀行为。Zn的掺入可诱导P/O共生相的生成,引起高电压下的晶格收缩,减少脱钠过程的晶格膨胀程度。Ti的掺入可抑制[Ni ^3+^ O6]的姜泰勒扭曲,消除Na ^+^ /空穴重排。这些使正极材料具有优异的循环稳定性(800次循环后容量保持率为84.2%),并结合化学预钠的方式,成功组装了不同Ah级的软包电池,在3600次循环后容量保持率可达到93%,展现了巨大的产业化应用前景。相关工作以“Negative Lattice Expansion in an O3-Type Transition-Metal Oxide Cathode for Highly Stable Sodium-Ion Batteries”为题发表在国际顶级期刊Angew. Chem. Int. Ed.上,南开大学博士研究生张彤为本文第一作者。

【内容表述】

亮点:

1)通过特定元素掺杂改变充放电过程中的相变路径来实现晶格负膨胀,提高正极材料的循环稳定性。

2)优化软包电池的制备工艺,实现长循环稳定的Ah级钠离子电池的成功组装。

wKgaomWtwriASccqAALpxuSOs74078.jpg

图1.(a)精修的XRD。(b)HADDF-STEM图像。(c)结构示意图。(d)在Ni K边的XANES谱。(e)Ni K边EXAFS与R空间的拟合。(f)材料的TM八面体位点的COHP分析。

作者使用XRD精修、扫描透射电子显微镜(STEM)结合高角度环形暗场(HAADF)揭示了O3-Na0.9Ni0.32Zn0.08Fe0.1Mn0.3Ti0.2O2的原子结构。与初始样(NFM)相比,Zn和Ti的协同掺入导致d~(O−Na−O)~ and Na-O 键长的增加 ,这有利于Na ^+^ 的扩散。ZT-NFM的Ni K边的吸收边右移证实了Ni的氧化态增加,通过对EXAFS的拟合表明Ni和O之间的相互作用增强,这也与-COHP的计算结果一致。

wKgaomWtwriAB3g6AATaq85kMf4152.jpg

图2.(a)材料的原位XRD。(b)对比样品的原位XRD。(c, d, e)材料在初始状态,充电至3.6V,充电至4.0V的HAADF STEM图像和强度分布。(f, g)材料和对比样晶格参数的演变。

作者通过原位XRD监测结构演变,如图2所示。ZT-NFM与NFM初始充电时均发生O3-P3相变。当进一步充电到3.6 V时,ZT-NFM与NFM的相变行为开始出现不同。ZT-NFM的(003)峰缓慢向右移动,这表明P3相通过固溶体脱钠逐渐转变为O/P共生的OP2相。作者进一步使用HAADF STEM去直接观测脱钠过程的结构变化,证实了O3↔P3↔OP2的相变路径。相反,NFM一直保持(003)峰的左移,维持P3结构。在随后的放电过程中,ZT-NFM的所有衍射峰均恢复到初始状态,表明从O3↔P3↔OP2的相变路径是高度可逆的。此外,作者还对比了单独掺杂样品的相变行为,证实了是Zn诱导了P3-OP2的相变。

作者对ZT-NFM及NFM的原位XRD进行了精修拟合,分析了脱钠过程中的晶格参数及层间距的变化。结果表明ZT-NFM的c-lattice的变化程度要小于NFM,并展现出先膨胀后收缩的行为。进一步地分析材料在C轴方向的层间距变化,结果表明ZT-NFM在O3-Na0.9-ZT-NFM→P3-Na0.75-ZT-NFM→P3-Na0.51-ZT-NFM→OP2-Na0.38-ZT-NFM阶段的层间距的膨胀率分别为+2.7%, +1.3%和-1.6%,在充电末端由P3-OP2相变引起了负的晶格膨胀,总的膨胀率为+2.4%。相反,NFM层间距的总膨胀率为+5.2%,对应着O3-Na0.9-NFM→O‘3-Na0.86-NFM→P3-Na0.77-NFM→P3-Na0.35-NFM相变的膨胀率为+0.5%, +2.3%和+2.4%。这说明P3-OP2相变可以引起负的晶格膨胀,减少沿着C轴方向的层间距变化,有利于缓解脱嵌钠时的应力。

wKgZomWtwriAcIr8AAQTbK_w0U8656.jpg

图3.(a)材料在脱钠过程的结构示意图。(b, c, d)材料在不同充电状态下的DOS。(e)TM-O的键长。(f)材料在充电过程中O-O键长及斥力变化的示意图。

作者利用DFT理论计算去研究掺杂对电子结构及相变行为的影响。从DOS上可以看出Zn掺杂后存在非键合的O(2p)且增加了周围O的电子密度,进而造成相邻层间O ^2-^ -O ^2-^ 斥力的增大,最终诱导P3-OP2相变的发生。同样的,计算结果表明TiO6八面体具有较好的柔性,可以抑制[Ni ^3+^ O6]的姜泰勒扭曲,消除了O’3中间相的生成。

wKgZomWtwriACwAIAAJMkQfkkbQ178.jpg

图4.(a, b)Ni 和Fe在K边的XANES谱。(c, d)Ni和Fe的EXAFS谱与拟合。

作者为了阐明ZT-NFM的电荷补偿机制,在不同状态下进行了非原位XAS光谱。在初始充电至4.0 V期间,Ni K-边的吸收边右移并接近LiNiO2,表明Ni ^2+^ 被氧化为Ni ^4+^ 。Fe K-边的吸收边也逐渐右移,表明Fe ^3+^ 被氧化为Fe ^4+^ 。这些可以通过图4c,d所示的第一个Ni–O及Fe-O配位层中缩短的原子间距离证实。

wKgZomWtwriAXL2OAAHrMUo2dio424.jpg

图5.(a)材料在2.0和4.0 V之间在5mA g^–1^下的充电/放电曲线。(b)0.1mV s^–1^下,第二圈循环的CV曲线。(c)在不同倍率下的倍率性能。(d)软包电池中5mA g^–1^下的充电/放电曲线。(e)软包电池在100mA g^–1^时的循环性能。

作者首先在以钠为负极的半电池中评价了ZT-NFM的电化学性能。如图5a和b所示,ZT-NFM的充放电曲线平滑,容量最高达到144.9 mAh g ^-1^ ,且放电平台得到了一定程度的提升。ZT-NFM在800次长循环后容量保持率为84.2%,远高于NFM的50%。为进一步评价正极材料的电化学性能,作者成功组装了ZT-NFM/HC的软包电池。HC负极首先通过一种化学预钠的方式进行补钠,这样能够弥补首圈活性Na的损失,且利于HC界面的稳定性。软包电池的能量密度可以达到133Wh kg ^-1^ ,在100 mA g^-1^电流密度下循环3600圈容量保持率可达到93%,展现了巨大的产业化应用前景。

wKgaomWtwriASe7OAAVtQgXip7E837.jpg

图6.(a, b)材料和对比样在循环400圈后的HAADF STEM图像。(c,d)材料在体相的HAADF STEM图像及应力模拟。(e,f)对比样在体相的HAADF STEM图像及应力模拟。(g, h)材料在表面裂纹的HAADF STEM图像及应力模拟。

最后,作者研究了材料在长循环后的结构变化。ZT-NFM在400圈循环后表面出现了微小的裂纹,但在体相结构中没有明显的结构变化,且应力分布较为均匀,这与晶格参数变化的结果相一致,即负膨胀减少了在C轴方向的变化,抑制了局部应力的集中。相反,NFM在表面及体相均出现明显的裂纹,部分裂纹从表面延伸并贯穿整个结构。在材料体相结构中,出现了晶格失配,且存在应力集中的现象。在表面结构,有明显的过渡金属溶出现象,并在表面发生结构重拍,生成了岩盐相。

【总结与展望】

本研究制备了O3-Na0.9Ni0.32Zn0.08Fe0.1Mn0.3Ti0.2O2作为钠离子电池的正极材料,突出了相变路径对稳定性的影响。Zn的掺杂可以提高相邻层间的斥力,诱导O/P混相的生成,抑制晶格及层间距的变化。Ti的掺杂抑制了Ni ^3+^ 的姜泰勒效应,消除了O‘3中间相,因此钠离子电池能在2.0-4.0V电压范围内稳定循环。该研究为高性能、长循环钠离子电池层状氧化物正极的设计提供了新思路。







审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 钠离子电池
    +关注

    关注

    6

    文章

    201

    浏览量

    14362
  • 软包电池
    +关注

    关注

    1

    文章

    162

    浏览量

    7755

原文标题:李福军教授Angew:“晶格负膨胀”实现长循环钠离子电池

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    钠离子电池储能的优势有哪些

    钠离子电池作为一种新兴的储能技术,近年来受到了广泛关注,其在储能领域的优势主要体现在以下几个方面
    的头像 发表于 04-26 15:47 92次阅读

    钠离子电池未来会取代锂离子电池吗?两者之间有何异同?

    钠离子电池未来会取代锂离子电池吗?两者之间有何异同? 随着全球对可再生能源和能源储存需求的不断增加,锂离子电池作为目前主流的能源储存技术,面临一些挑战。一种备受关注的备选技术是
    的头像 发表于 01-10 13:45 325次阅读

    比亚迪(徐州)钠离子电池项目开工

    在1月4日,徐州市举行了一场全市重大产业项目建设启动会,并宣布了比亚迪(徐州)钠离子电池项目的开工奠基活动。这个项目总投资高达100亿元,主要致力于生产钠离子电池电芯以及PACK等相关
    的头像 发表于 01-07 17:39 1209次阅读

    钠离子电池研究现状

    动力电池是新能源汽车的能源储存装置,主要包括锂离子电池钠离子电池、固态电池等多种类型。它们具有高能量密度、长寿命、环保等优点,成为了替代传
    的头像 发表于 12-03 16:08 1243次阅读
    <b class='flag-5'>钠离子</b><b class='flag-5'>电池</b>研究现状

    比亚迪宣布投资百亿布局钠离子电池

    近期锂电池产业相关投资放缓之后,钠离子电池似乎成了主角。近几日,两家企业都宣布了钠离子电池的投资计划,投资规模均达到了百亿元。
    的头像 发表于 11-25 16:37 626次阅读
    比亚迪宣布投资百亿布局<b class='flag-5'>钠离子</b><b class='flag-5'>电池</b>

    钠离子电池如何实现80000次超长循环

    钠离子电池(NIB)资源丰富、成本低廉,可以作为锂离子电池的有益补充。然而,Na+(1.02 Å)的半径比 Li+(0.76 Å)大,容易导致电极材料在去/钠化过程中产生相对严重的机械应变/应力以及缓慢的 Na
    发表于 11-02 10:00 355次阅读
    <b class='flag-5'>钠离子</b><b class='flag-5'>电池</b>如何<b class='flag-5'>实现</b>80000次超长<b class='flag-5'>循环</b>?

    谁在入局钠离子电池钠离子电池为何机遇挑战并存?

    很多人说,混动的今天就是钠离子电池的明天,老李也非常认同这个说法。
    发表于 10-22 10:20 278次阅读

    固态钠离子电池与固态锂离子电池对比

    近期,固态钠离子电池频频“出圈”。9月22日,广州昊威新能源30GWh固态方形钠离子电池项目签约重庆,计划投资100亿元;8月,乐普钠电表示正在搭建
    的头像 发表于 10-21 17:05 1572次阅读
    固态<b class='flag-5'>钠离子</b><b class='flag-5'>电池</b>与固态锂<b class='flag-5'>离子电池</b>对比

    TDG 23版新增钠离子电池运输要求

    钠离子电池因其成本与环保等优势,应用范围越来越广,相关法规及标准也在不断完善。近期,联合国《关于危险货物运输的建议书规章范本》(以下简称TDG)第23修订版已发布。钠离子电池运输规定新
    的头像 发表于 09-15 16:26 1283次阅读
    TDG 23版新增<b class='flag-5'>钠离子</b><b class='flag-5'>电池</b>运输要求

    钠离子电池三大技术路线“竞速”

    2023年被视为钠离子电池产业化的关键节点。
    发表于 08-29 09:47 566次阅读

    隔膜容量补偿策略应用于钠离子电池

    钠离子电池由于钠资源丰富、分布广泛、容易获得而受到广泛关注。在大规模储能以及低速电动汽车领域,钠离子电池有望在一定程度上取代对锂离子电池的依
    发表于 08-07 11:00 590次阅读
    隔膜容量补偿策略应用于<b class='flag-5'>钠离子</b><b class='flag-5'>电池</b>

    圆柱钠离子电池的优缺点和应用领域

    钠离子电池的内部结构由正极、负极、电解质和隔膜组成,电极材料通常是钠离子化合物,如钠镍氧化物(NaNiO2)或钠铁磷酸盐(NaFePO4)。圆柱钠离子
    的头像 发表于 07-12 09:47 1014次阅读

    新能源汽车产业2033年钠离子电池全球需求估飙增至7倍

    现阶段的钠离子电池可类比锂离子电池发展历程中的早期阶段,相关材料和电池制造企业多数正处于从中试迈向量产的过程中。预计2023 年钠离子
    的头像 发表于 06-01 15:41 850次阅读

    新能源钠离子电池预钠化技术进展

    循环稳定性。为了提高可逆循环容量和首次库伦效率,人们开发了针对钠离子电池电极材料的预钠化技术。该技术可以补充因负极反应生成固态界面膜消耗的活性物质,提高
    的头像 发表于 05-30 09:49 1471次阅读
    新能源<b class='flag-5'>钠离子</b><b class='flag-5'>电池</b>预钠化技术进展

    为什么不选择石墨作为钠离子电池的负极材料?

    作为钠离子电池的核心部件之一,负极对电池的能量密度、倍率性能、循环性能以及首次库仑效率等有着重要影响。
    的头像 发表于 05-22 16:23 2112次阅读
    为什么不选择石墨作为<b class='flag-5'>钠离子</b><b class='flag-5'>电池</b>的负极材料?