0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

先进封装表面金属化研究

半导体封装工程师之家 来源:半导体封装工程师之家 作者:半导体封装工程师 2023-12-28 08:45 次阅读

欢迎了解

杨彦章 钟上彪 陈志华

(光华科学技术研究院(广东)有限公司

摘要

先进封装是半导体行业未来发展的重要一环,是超越摩尔定律的关键技术。本文通过对不同封装材料进行表面金属化处理,发现粗糙度和镀层应力对镀层结合力均有显著影响。选择合适的粗化方法及低应力电镀铜镀液可以在不显著增加封装材料表面粗糙度的情况下提高镀层结合力(剥离强度>0.53 N/mm),从而有利于制作精细线路(线宽/线距=15 μm/15 μm)。

0 引言

先进封装包括PLP、SOC、SIP等封装,是顺应半导体行业向更小尺寸、更高性能发展趋势的新的高技术含量的封装技术 [1]-[4] 。先进封装表面金属化可以实现封装体电磁屏蔽、散热、导电等功能,进一步减小封装器件的尺寸,并且提高封装器件的性能 [5]-[7] 。目前先进封装表面金属化存在粗糙度高、结合力低等问题,面临难以制作精细线路的挑战 [8]-[10] 。针对这一问题,本文通过优化封装材料表面粗化技术和使用低应力电镀铜镀液,成功实现低粗糙度高结合力的镀层,并完成精细线路的制作。

1 粗糙度

粗糙度是表征材料表面形貌的参数(如图1所示),其数值大小对镀层结合力有显著影响 [11] 。一般来讲,粗糙度越大越有利于镀层结合力的增加,因此提高镀层结合力的重要手段在于增加接触面的粗糙度。然而粗糙度过大不利于制作精细线路 [12] 。

684c6cde-a51a-11ee-9b10-92fbcf53809c.png

2 镀层应力

应力广泛存在于各种材料中,对材料的机械、化学等性能有重要影响 [13] 。电镀层的镀层应力会影响镀层硬度和开裂,例如应力越大的镀层其镀层机械性能越差。影响镀层应力的因素有很多,如镀液配方、电镀参数等 [14] 。

3 实验方案

3.1 原理

如图2所示,首先对封装材料表面进行粗化,然后使用化学镀在表面镀上种子层金属铜(<1 μm),最后使用电镀铜增加镀层厚度(>10 μm)。

68529758-a51a-11ee-9b10-92fbcf53809c.png

如图3所示,使用粗化方法A对封装材料EMC-1表面的树脂区域进行咬蚀,增大表面的粗糙度,然后使用化学镀在表面镀上种子层金属铜,最后使用电镀铜增加镀层厚度。

685f8ab2-a51a-11ee-9b10-92fbcf53809c.png

如图4所示,使用粗化方法B对封装材料EMC-2表面的填料区域进行咬蚀,增大表面的粗糙度,然后使用化学镀在表面镀上种子层金属铜,最后使用电镀铜增加镀层厚度。

68666486-a51a-11ee-9b10-92fbcf53809c.png

3.2 试验材料及测试设备

本文所使用的封装材料均为环氧树脂塑封料(EMC),这种类型的封装材料占整个电子封装材料的90%以上。EMC材料共有两种,差异主要体现在填料的筛分粒径不同——EMC-1和EMC-2的筛分粒径分别为50 μm和20 μm。测试设备包括激光共聚焦显微镜、电子扫描显微镜、剥离强度测试仪(如图5所示)、应力测试仪(如图6所示)。

68766f02-a51a-11ee-9b10-92fbcf53809c.png

687ad3d0-a51a-11ee-9b10-92fbcf53809c.png

4 实验结果及分析

EMC-1和EMC-2粗化前后表面的SEM照片如图7所示。从图中结果可以看出,粗化后的EMC材料表面形貌较粗化前变得更加粗糙:(1)粗化后的EMC-1表面树脂区域被咬蚀的微坑尺寸明显增大;(2)粗化后的EMC-2表面填料区域出现了清晰的咬蚀裂纹。

为进一步分析粗化前后的EMC表面粗糙度,我们使用激光共聚焦显微镜对EMC表面粗糙度进行表征,结果列于表1。从表1可以看出,EMC-1粗化后的表面粗糙度相较于粗化前显著增大,而EMC-2粗化后的表面粗糙度相较于粗化前增加不明显。这与图7的表征结果是一致的。

68853ca8-a51a-11ee-9b10-92fbcf53809c.png

688946ae-a51a-11ee-9b10-92fbcf53809c.png

EMC表面电镀铜后的界面结构如图8所示。从图中可以看出,EMC-1/镀层界面起伏较大,这是由于EMC-1粗化后的表面粗糙度大(与图7d-f和表1一致)。EMC-2/镀层界面相较于EMC-1/镀层界面更加平坦,无显著起伏波动(与图7j-l和表1一致),这样的界面更易制作精细线路。

68959b98-a51a-11ee-9b10-92fbcf53809c.png

我们使用剥离强度来表征镀层与EMC之间的结合力。从表2可以看出,相较于未经过表面粗化处理的EMC材料,经过表面粗化处理后的EMC材料表面镀层的剥离强度显著增加,这表明EMC表面粗糙度对镀层结合力起重要作用。此外,不同的电镀铜镀液获得的镀层剥离强度不同:在相同前处理条件下,镀液2获得的镀层结合力要优于镀液1。这是由于镀液2的镀层应力更低(如表3所示),所以获得的镀层与基材之间的结合力更高。

68999310-a51a-11ee-9b10-92fbcf53809c.png

68a54ee4-a51a-11ee-9b10-92fbcf53809c.png

在前面实验结果的基础上,我们使用SAP工艺在EMC-2表面制作精细线路。如图9所示,使用SAP工艺成功在EMC-2表面制作出线宽/线距=15 μm/15 μm的精细线路,且未出现线路脱落的现象,这表明该金属化工艺可以满足精细线路的制作要求。

68a8ef0e-a51a-11ee-9b10-92fbcf53809c.png

5 结论

环氧塑封料是先进封装常用的封装材料。本文研究了湿化学工艺中前处理和电镀对两种填料粒径不同的EMC封装材料表面镀层结合力的影响,发现增加表面粗糙度和降低电镀铜层镀层应力可以有效提高镀层结合力:最大剥离强度可达0.92 N/mm。选择填料尺寸较小的EMC材料,可以在低的表面粗糙度下(Sz<18 μm)实现0.58 N/mm的镀层结合力,并且使用SAP工艺制作出线宽/线距=15 μm/15 μm的精细线路。这些实验结果为适应未来先进封装金属化更高的要求提供了解决思路,也为电介质-金属互联工艺提供了技术参考。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    328

    文章

    24506

    浏览量

    202122
  • 封装
    +关注

    关注

    123

    文章

    7278

    浏览量

    141096
  • SAP
    SAP
    +关注

    关注

    1

    文章

    327

    浏览量

    21414
收藏 人收藏

    评论

    相关推荐

    能同时组装先进封装表面贴装元件的FuzionSC半导体贴片机

    为了应对汽车电子、5G、6G及智能设备的组装需要,厂家往往需要同时组装先进封装表面贴装元件。
    的头像 发表于 12-28 13:43 315次阅读
    能同时组装<b class='flag-5'>先进</b><b class='flag-5'>封装</b>及<b class='flag-5'>表面</b>贴装元件的FuzionSC半导体贴片机

    浅析金属化薄膜电容器及其自愈性

    电容器在很多电器中都能用到,它在电路中的作用是负责信息的传递以及能量的储存,电容器的种类极多,其中金属化聚丙烯薄膜电容就是其中最重要的一个类型。
    的头像 发表于 12-24 10:47 538次阅读

    金属化膜电容器的热阻是什么意思

    金属化膜电容器是一种常见且广泛应用于电子产品中的电子元件。它具有小体积、大电容量、低损耗等特点,因此被广泛应用于各种电子电路中。然而,当电容器工作时,会产生一定的热量,这可能会影响电容器的性能和稳定性。
    的头像 发表于 12-08 14:23 387次阅读

    HRP晶圆级先进封装替代传统封装技术研究(HRP晶圆级先进封装芯片)

    工艺技术的研究,由深圳市华芯邦科技有限公司(Hotchip)提出,可解决元器件散热、可靠性、成本、器件尺寸等问题,是替代传统封装技术解决方案之一。本文总结了HRP工艺的封装特点和优势,详细介绍其工艺实现路线,为传统
    的头像 发表于 11-30 09:23 1254次阅读
    HRP晶圆级<b class='flag-5'>先进</b><b class='flag-5'>封装</b>替代传统<b class='flag-5'>封装</b>技术<b class='flag-5'>研究</b>(HRP晶圆级<b class='flag-5'>先进</b><b class='flag-5'>封装</b>芯片)

    美能光伏与您一起回顾第二届N型高效电池与金属化技术研讨会

    11月23日,第二届N型高效电池与金属化技术研讨会于安徽滁州隆重召开,现场众多光伏专业人士一齐探讨N型电池与金属化技术的问题。「美能光伏」为帮助光伏企业用户更高效的解决N型电池的性能问题,携带
    的头像 发表于 11-25 08:33 395次阅读
    美能光伏与您一起回顾第二届N型高效电池与<b class='flag-5'>金属化</b>技术研讨会

    芯片制程之常见的金属化制程

    气态前驱体在晶圆上反应,形成所需的薄膜沉积在晶圆表面。CVD可用于沉积多种金属,如钨、铜、钛等。
    发表于 11-16 12:24 829次阅读
    芯片制程之常见的<b class='flag-5'>金属化</b>制程

    深入了解陶瓷基板金属化,陶瓷与金属的完美结合

    在大功率电子器件使用中为实现芯片与电子元件之间的互联,陶瓷作为封装基板材料,需对其表面进行金属化处理。陶瓷金属化有如下要求:优良的密封性,金属
    的头像 发表于 11-01 08:44 363次阅读
    深入了解陶瓷基板<b class='flag-5'>金属化</b>,陶瓷与<b class='flag-5'>金属</b>的完美结合

    深入了解陶瓷基板金属化,陶瓷与金属的完美结合

    在大功率电子器件使用中为实现芯片与电子元件之间的互联,陶瓷作为封装基板材料,需对其表面进行金属化处理。陶瓷金属化有如下要求:优良的密封性,金属
    的头像 发表于 10-28 14:27 468次阅读
    深入了解陶瓷基板<b class='flag-5'>金属化</b>,陶瓷与<b class='flag-5'>金属</b>的完美结合

    墙体机器视觉金属复杂表面缺陷的分类及成因

    检测过程中金属工件的复杂表面会增加表面缺陷检测难度,在本文研究中,金属工件为手机内部芯片屏蔽罩,其表面
    发表于 10-18 10:44 206次阅读
    墙体机器视觉<b class='flag-5'>金属</b>复杂<b class='flag-5'>表面</b>缺陷的分类及成因

    先进封装中硅通孔(TSV)铜互连电镀研究进展

    先进封装中硅通孔(TSV)铜互连电镀研究进展
    的头像 发表于 09-06 11:16 588次阅读
    <b class='flag-5'>先进</b><b class='flag-5'>封装</b>中硅通孔(TSV)铜互连电镀<b class='flag-5'>研究</b>进展

    光学3D表面轮廓仪可以测金属吗?

    重建物体的三维模型。这种测量方式具有非接触性、高精度、高速度等优点,非常适合用于金属等材料的表面测量。 光学3D表面轮廓仪可以测量金属的形状、表面
    发表于 08-21 13:41

    什么是先进封装?和传统封装有什么区别?

    半导体器件有许多封装形式,按封装的外形、尺寸、结构分类可分为引脚插入型、表面贴装型和高级封装三类。从DIP、SOP、QFP、PGA、BGA到CSP再到SIP,技术指标一代比一代
    的头像 发表于 08-14 09:59 1157次阅读
    什么是<b class='flag-5'>先进</b><b class='flag-5'>封装</b>?和传统<b class='flag-5'>封装</b>有什么区别?

    什么是先进封装先进封装和传统封装区别 先进封装工艺流程

    半导体器件有许多封装形式,按封装的外形、尺寸、结构分类可分为引脚插入型、表面贴装型和高级封装三类。从DIP、SOP、QFP、PGA、BGA到CSP再到SIP,技术指标一代比一代
    发表于 08-11 09:43 1989次阅读
    什么是<b class='flag-5'>先进</b><b class='flag-5'>封装</b>?<b class='flag-5'>先进</b><b class='flag-5'>封装</b>和传统<b class='flag-5'>封装</b>区别 <b class='flag-5'>先进</b><b class='flag-5'>封装</b>工艺流程

    PCB孔金属化问题的改善措施

    通常,多层印制电路板孔金属化缺陷产生是由不同工序、各种工艺条件相互影响而产生
    发表于 07-25 15:58 755次阅读

    一文看懂金属表面改性技术

    电镀是一种利用电化学性质,在镀件表面上沉积所需形态的金属覆层的表面处理工艺。 电镀原理:在含有欲镀金属的盐类溶液中,以被镀基体金属为阴极,
    的头像 发表于 05-29 12:07 754次阅读
    一文看懂<b class='flag-5'>金属表面</b>改性技术