0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Linux内核中使用的数据结构

科技绿洲 来源:Linux开发架构之路 作者:Linux开发架构之路 2023-11-09 14:24 次阅读

Linux内核代码中广泛使用了数据结构和算法,其中最常用的两个是链表和红黑树。

链表

Linux内核代码大量使用了链表这种数据结构。链表是在解决数组不能动态扩展这个缺陷而产生的一种数据结构。链表所包含的元素可以动态创建并插入和删除。链表的每个元素都是离散存放的,因此不需要占用连续的内存。链表通常由若干节点组成,每个节点的结构都是一样的,由有效数据区和指针区两部分组成。有效数据区用来存储有效数据信息,而指针区用来指向链表的前继节点或者后继节点。因此,链表就是利用指针将各个节点串联起来的一种存储结构。

(1)单向链表

单向链表的指针区只包含一个指向下一个节点的指针,因此会形成一个单一方向的链表,如下代码所示。

struct list {
int data; /*有效数据*/
struct list *next; /*指向下一个元素的指针*/
};

如图所示,单向链表具有单向移动性,也就是只能访问当前的节点的后继节点,而无法访问当前节点的前继节点,因此在实际项目中运用得比较少。

图片

单向链表示意图

(2)双向链表

如图所示,双向链表和单向链表的区别是指针区包含了两个指针,一个指向前继节点,另一个指向后继节点,如下代码所示。

struct list {
int data; /*有效数据*/
struct list *next; /*指向下一个元素的指针*/
struct list *prev; /*指向上一个元素的指针*/
};

图片

双向链表示意图

(3)Linux内核链表实现

单向链表和双向链表在实际使用中有一些局限性,如数据区必须是固定数据,而实际需求是多种多样的。这种方法无法构建一套通用的链表,因为每个不同的数据区需要一套链表。为此,Linux内核把所有链表操作方法的共同部分提取出来,把不同的部分留给代码编程者自己去处理。Linux内核实现了一套纯链表的封装,链表节点数据结构只有指针区而没有数据区,另外还封装了各种操作函数,如创建节点函数、插入节点函数、删除节点函数、遍历节点函数等。

Linux内核链表使用struct list_head数据结构来描述。



struct list_head {
struct list_head *next, *prev;
};

struct list_head数据结构不包含链表节点的数据区,通常是嵌入其他数据结构,如struct page数据结构中嵌入了一个lru链表节点,通常是把page数据结构挂入LRU链表。



struct page {
...
struct list_head lru;
...
}

链表头的初始化有两种方法,一种是静态初始化,另一种动态初始化。

把next和prev指针都初始化并指向自己,这样便初始化了一个带头节点的空链表。



/*静态初始化*/
#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name)
struct list_head name = LIST_HEAD_INIT(name)

/*动态初始化*/
static inline void INIT_LIST_HEAD(struct list_head *list)
{
list->next = list;
list->prev = list;
}

添加节点到一个链表中,内核提供了几个接口函数,如list_add()是把一个节点添加到表头,list_add_tail()是插入表尾。



void list_add(struct list_head *new, struct list_head *head)
list_add_tail(struct list_head *new, struct list_head *head)

遍历节点的接口函数。

#define list_for_each(pos, head)
for (pos = (head)->next; pos != (head); pos = pos->next)

这个宏只是遍历一个一个节点的当前位置,那么如何获取节点本身的数据结构呢?这里还需要使用list_entry()宏。

#define list_entry(ptr, type, member)
container_of(ptr, type, member)
container_of()宏的定义在kernel.h头文件中。
#define container_of(ptr, type, member) ({
const typeof( ((type *)0)->member ) *__mptr = (ptr);
(type *)( (char *)__mptr - offsetof(type,member) );})

#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

其中offsetof()宏是通过把0地址转换为type类型的指针,然后去获取该结构体中member成员的指针,也就是获取了member在type结构体中的偏移量。最后用指针ptr减去offset,就得到type结构体的真实地址了。

下面是遍历链表的一个例子。



static ssize_t class_osdblk_list(struct class *c,
struct class_attribute *attr,
char *data)
{
int n = 0;
struct list_head *tmp;

list_for_each(tmp, &osdblkdev_list) {
struct osdblk_device *osdev;

osdev = list_entry(tmp, struct osdblk_device, node);

n += sprintf(data+n, "%d %d %llu %llu %sn",
osdev->id,
osdev->major,
osdev->obj.partition,
osdev->obj.id,
osdev->osd_path);
}
return n;
}

红黑树

红黑树(Red Black Tree)被广泛应用在内核的内存管理和进程调度中,用于将排序的元素组织到树中。红黑树被广泛应用在计算机科学的各个领域中,它在速度和实现复杂度之间提供一个很好的平衡。

红黑树是具有以下特征的二叉树。

每个节点或红或黑。

  • 每个叶节点是黑色的。
  • 如果结点都是红色,那么两个子结点都是黑色。
  • 从一个内部结点到叶结点的简单路径上,对所有叶节点来说,黑色结点的数目都是相同的。

红黑树的一个优点是,所有重要的操作(例如插入、删除、搜索)都可以在O(log n)时间内完成,n为树中元素的数目。经典的算法教科书都会讲解红黑树的实现,这里只是列出一个内核中使用红黑树的例子,供读者在实际的驱动和内核编程中参考。这个例子可以在内核代码的documentation/Rbtree.txt文件中找到。

#include
#include
#include
#include
#include
#include
#include

MODULE_AUTHOR("figo.zhang");
MODULE_DESCRIPTION(" ");
MODULE_LICENSE("GPL");

struct mytype {
struct rb_node node;
int key;
};

/*红黑树根节点*/
struct rb_root mytree = RB_ROOT;
/*根据key来查找节点*/
struct mytype *my_search(struct rb_root *root, int new)
{
struct rb_node *node = root->rb_node;

while (node) {
struct mytype *data = container_of(node, struct mytype, node);

if (data->key > new)
node = node->rb_left;
else if (data->key < new)
node = node->rb_right;
else
return data;
}
return NULL;
}

/*插入一个元素到红黑树中*/
int my_insert(struct rb_root *root, struct mytype *data)
{
struct rb_node **new = &(root->rb_node), *parent=NULL;

/* 寻找可以添加新节点的地方 */
while (*new) {
struct mytype *this = container_of(*new, struct mytype, node);

parent = *new;
if (this->key > data->key)
new = &((*new)->rb_left);
else if (this->key < data->key) {
new = &((*new)->rb_right);
} else
return -1;
}

/* 添加一个新节点 */
rb_link_node(&data->node, parent, new);
rb_insert_color(&data->node, root);

return 0;
}

static int __init my_init(void)
{
int i;
struct mytype *data;
struct rb_node *node;

/*插入元素*/
for (i =0; i < 20; i+=2) {
data = kmalloc(sizeof(struct mytype), GFP_KERNEL);
data->key = i;
my_insert(&mytree, data);
}

/*遍历红黑树,打印所有节点的key值*/
for (node = rb_first(&mytree); node; node = rb_next(node))
printk("key=%dn", rb_entry(node, struct mytype, node)->key);

return 0;
}

static void __exit my_exit(void)
{
struct mytype *data;
struct rb_node *node;
for (node = rb_first(&mytree); node; node = rb_next(node)) {
data = rb_entry(node, struct mytype, node);
if (data) {
rb_erase(&data->node, &mytree);
kfree(data);
}
}
}
module_init(my_init);
module_exit(my_exit);

mytree是红黑树的根节点,my_insert()实现插入一个元素到红黑树中,my_search()根据key来查找节点。内核大量使用红黑树,如虚拟地址空间VMA的管理。

无锁环形缓冲区

生产者和消费者模型是计算机编程中最常见的一种模型。生产者产生数据,而消费者消耗数据,如一个网络设备,硬件设备接收网络包,然后应用程序读取网络包。环形缓冲区是实现生产者和消费者模型的经典算法。环形缓冲区通常有一个读指针和一个写指针。读指针指向环形缓冲区中可读的数据,写指针指向环形缓冲区可写的数据。通过移动读指针和写指针实现缓冲区数据的读取和写入。

在Linux内核中,KFIFO是采用无锁环形缓冲区的实现。FIFO的全称是“First In First Out”,即先进先出的数据结构,它采用环形缓冲区的方法来实现,并提供一个无边界的字节流服务。采用环形缓冲区的好处是,当一个数据元素被消耗之后,其余数据元素不需要移动其存储位置,从而减少复制,提高效率。

(1)创建KFIFO

在使用KFIFO之前需要进行初始化,这里有静态初始化和动态初始化两种方式。



int kfifo_alloc(fifo, size, gfp_mask)

该函数创建并分配一个大小为size的KFIFO环形缓冲区。第一个参数fifo是指向该环形缓冲区的struct kfifo数据结构;第二个参数size是指定缓冲区元素的数量;第三个参数gfp_mask表示分配KFIFO元素使用的分配掩码。

静态分配可以使用如下的宏。

#define DEFINE_KFIFO(fifo, type, size)
#define INIT_KFIFO(fifo)

(2)入列

把数据写入KFIFO环形缓冲区可以使用kfifo_in()函数接口。

int kfifo_in(fifo, buf, n)

该函数把buf指针指向的n个数据复制到KFIFO环形缓冲区中。第一个参数fifo指的是KFIFO环形缓冲区;第二个参数buf指向要复制的数据的buffer;第三个数据是要复制数据元素的数量。

(3)出列

从KFIFO环形缓冲区中列出或者摘取数据可以使用kfifo_out()函数接口。

#define kfifo_out(fifo, buf, n)

该函数是从fifo指向的环形缓冲区中复制n个数据元素到buf指向的缓冲区中。如果KFIFO环形缓冲区的数据元素小于n个,那么复制出去的数据元素小于n个。

(4)获取缓冲区大小

KFIFO提供了几个接口函数来查询环形缓冲区的状态。

#define kfifo_size(fifo)
#define kfifo_len(fifo)
#define kfifo_is_empty(fifo)
#define kfifo_is_full(fifo)

kfifo_size()用来获取环形缓冲区的大小,也就是最大可以容纳多少个数据元素。kfifo_len()用来获取当前环形缓冲区中有多少个有效数据元素。kfifo_is_empty()判断环形缓冲区是否为空。kfifo_is_full()判断环形缓冲区是否为满。

(5)与用户空间数据交互

KFIFO还封装了两个函数与用户空间数据交互。

#define kfifo_from_user(fifo, from, len, copied)
#define kfifo_to_user(fifo, to, len, copied)

kfifo_from_user()是把from指向的用户空间的len个数据元素复制到KFIFO中,最后一个参数copied表示成功复制了几个数据元素。

kfifo_to_user()则相反,把KFIFO的数据元素复制到用户空间。这两个宏结合了copy_to_user()、copy_from_user()以及KFIFO的机制,给驱动开发者提供了方便。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 存储
    +关注

    关注

    12

    文章

    3859

    浏览量

    84671
  • 内存
    +关注

    关注

    8

    文章

    2767

    浏览量

    72774
  • 数据结构
    +关注

    关注

    3

    文章

    564

    浏览量

    39900
  • LINUX内核
    +关注

    关注

    1

    文章

    311

    浏览量

    21389
收藏 人收藏

    评论

    相关推荐

    Linux内核结构详解

    ,打印警告或错误信息的过程,还有系统的调试例程等等。系统数据结构linux内核的实现中,有一些数据结构使用频度较高,他们是:task_struct.
    发表于 07-11 16:59

    Linux内核中的数据结构的一点认识

    大家都知道linux内核是世界上优秀的软件之一,作为一款优秀的软件,其中的许多的设计都精妙之处,十分值得学习和借鉴。今天我们就带大家看一下内核中的数据结构中一点设计。打开
    发表于 04-20 16:42

    OpenHarmony——内核IPC机制数据结构解析

    制涉及到哪些关键数据结构?这些数据结构又是如何工作的?接下来我将从队列、事件、互斥锁、信号量几个内核对象出发,为大家讲解内核IPC机制的数据结构
    发表于 09-05 11:02

    OpenHarmony——内核IPC机制数据结构解析

    制涉及到哪些关键数据结构?这些数据结构又是如何工作的?接下来我将从队列、事件、互斥锁、信号量几个内核对象出发,为大家讲解内核IPC机制的数据结构
    发表于 09-08 11:44

    Linux内核教程

    本章学习目标掌握LINUX内核版本的含义理解并掌握进程的概念掌握管道的概念及实现了解内核数据结构了解LINUX
    发表于 04-10 16:59 0次下载

    《深入Linux内核架构》 莫尔勒著

    电子发烧友为您提供了免费下载,《深入Linux内核架构》一书讨论了Linux内核的概念、结构和实现。内核
    发表于 07-10 11:24 0次下载

    数据结构是什么_数据结构有什么用

    数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高
    发表于 11-17 14:45 1.6w次阅读
    <b class='flag-5'>数据结构</b>是什么_<b class='flag-5'>数据结构</b>有什么用

    什么是数据结构?为什么要学习数据结构数据结构的应用实例分析

    本文档的主要内容详细介绍的是什么是数据结构?为什么要学习数据结构数据结构的应用实例分析包括了:数据结构在串口通信当中的应用,数据结构在按键
    发表于 09-26 15:45 14次下载
    什么是<b class='flag-5'>数据结构</b>?为什么要学习<b class='flag-5'>数据结构</b>?<b class='flag-5'>数据结构</b>的应用实例分析

    Linux 内核里的数据结构关键:基数树

    基数树是一种 压缩的字典树compressed trie ,而字典树是实现了关联数组接口并允许以 键值对 方式存储值的一种数据结构。这里的键通常是字符串,但可以使用任意数据类型。
    发表于 04-28 16:04 784次阅读

    Linux 内核数据结构:位图(Bitmap)

    除了各种链式和树形数据结构Linux内核还提供了位图接口。位图在Linux内核中大量使用。下面的源代码文件包含这些
    发表于 05-14 17:24 3235次阅读

    你知道Linux内核数据结构中双向链表的作用?

    Linux 内核提供一套双向链表的实现,你可以在 include/linux/list.h 中找到。我们以双向链表着手开始介绍 Linux 内核
    发表于 05-14 17:27 1758次阅读

    Linux0.11-进程控制块数据结构

    嵌入式Linux中文站收集整理Linux0.11版本内核学习笔记,本文分析了Linux进程控制模块的数据结构
    发表于 05-15 15:22 851次阅读

    Linux内核的链表数据结构

    Linux内核实现了自己的链表数据结构,它的设计与传统的方式不同,非常巧妙也很通用。
    的头像 发表于 03-24 11:34 596次阅读
    <b class='flag-5'>Linux</b><b class='flag-5'>内核</b>的链表<b class='flag-5'>数据结构</b>

    Linux内核代码中常用的数据结构有哪些?

    Linux内核代码中广泛使用了数据结构和算法,其中最常用的两个是链表和红黑树。
    发表于 07-20 09:39 338次阅读

    epoll的基础数据结构

    一、epoll的基础数据结构 在开始研究源代码之前,我们先看一下 epoll 中使用的数据结构,分别是 eventpoll、epitem 和 eppoll_entry。 1、eventpoll 我们
    的头像 发表于 11-10 10:20 336次阅读
    epoll的基础<b class='flag-5'>数据结构</b>