0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

液态金属的可控流动与操纵综述

微流控 来源:微流控 2023-10-25 16:16 次阅读

液体的可控流动与操纵具有十分重要的科研价值和潜在应用,并且一直是一个难题。镓基室温液态金属(Gallium、EGaIn和Galinstan等)作为一种特殊的流体具有出色的流动性、高电/热导、可控表面以及可合金化等诸多性能。这种多合一的性质为液态金属提供了多种操纵方式。

鉴于该领域目前的研究热度以及快速发展,澳大利亚伍伦贡大学(University of Wollongong)创新校区超导与电子材料研究所所长王晓临教授团队在Advanced Functional Materials期刊上发表了题为“Controllable Flow and Manipulation of Liquid Metals”的综述文章,贺亚华博士为第一作者,博士生尤静以及美国北卡罗莱纳州立大学(North Carolina State University)Michael Dickey教授为共同作者。该综述回顾总结了镓基液态金属通过机械力(微流控、喷嘴打印)、电场(可控表面张力的流体动力学)、磁场、电磁场、声场、光场以及其他方式实现的可控流动与操纵。从根本机理、控制方式以及潜在的应用进行了总结与展望,并提出了目前研究中存在的问题,对之后这一方向的研究具有重要的指导意义。

5d81cf9e-730e-11ee-939d-92fbcf53809c.jpg

图1 液态金属的多功能性为其提供了多种操纵方式

基于微流控的液态金属可控流动

由于液态金属出色的流动性,其可以被注入到微流控通道内。由于其表面自发形成的氧化物限制层(含氧环境)能让液态金属在通道内形成稳定的结构,这使得液态金属非常适合被注入到弹性通道(如PDMS等有机物)中构建可高度变形和重构的电子器件。在限制表面氧化物形成时(例如在可溶解氧化物的NaOH溶液中),可实现可控大小的液态金属液滴(droplets),并实现液滴的可控运动。

5d869146-730e-11ee-939d-92fbcf53809c.png

图2 液态金属在微流控通道内的可控流动

可控的流体点胶与打印

液态金属也可以从喷嘴以不同的形态挤出来实现可控的流体点胶和打印,具体可分为自支撑结构和外部结构支撑俩种不同的方式。液态金属的自支撑结构主要依靠其表面氧化物使其形成稳定的结构,可通过逐滴喷出、雾化以及短线的方式来实现如3D打印和模版印刷等。外部支撑结构包括近距离衬底、水浴支撑以及修饰改性(例如液态金属墨水)来实现更复杂、更大空间跨度的立体结构。

5d966d6e-730e-11ee-939d-92fbcf53809c.png

图3 基于喷嘴的可控的流体点胶和打印:自支撑结构和外部支撑结构

表面张力的调控

对于流体,表面张力是一个重要的参数,其会使液体趋向于最小化表面积。和其他流体比较起来,液态金属具有极高的表面张力(> 400 mN/ m),因此液态金属会趋向于形成液滴,其运动也会受到限制。当将液态金属置于电解质中时,其表面张力可通过有效的方式进行调控,从而实现可控流动与操纵,具体可分为俩类。第一类是通过重新分布液态金属的表面电荷来制造表面张力梯度(例如将液态金属置于电场之间),电荷密度越高的地方表面张力越小,称之为电毛细管现象/电润湿 (electrocapillarity/electrowetting)。在电场下不均匀的电荷分布,会使液态金属向表面张力小的方向定向运动,这种可控运动可用于构建液态金属泵和轮形机器人

5d9a5df2-730e-11ee-939d-92fbcf53809c.png

图4 电场作用下的表面电荷不均匀分布所导致的液态金属的可控运动

但是第一类方法降低表面张力十分有限,为了达到极低的表面张力,第二类方法将液态金属连接正极,通过控制表面氧化的形成来调控表面张力(过厚的氧化物会限制液态金属的流动性),称之为电化学控制的氧化(electrochemical controlled oxidation)。第二类方法可以将表面张力减小到10⁻⁵mN/m,从而实现液态金属的可控形变与运动控制,例如管道内定向变形移动、多孔介质的穿透效应以及高/低表面张力状态切换控制的“液态金属心跳效应”等。

5db999e2-730e-11ee-939d-92fbcf53809c.jpg

图5 通过将液态金属连接正极来控制其表面氧化物的生成,从而更大范围调控表面张力来实现可控形变及运动

磁场控制

液态金属自身对磁场是没有响应的,但是由于其合金化的能力,一些磁性颗粒可以被添加到液态金属里面,从而可以通过磁场来控制液态金属的运动。根据添加磁性颗粒后液态金属的形貌差异,可将磁场控制分为俩类:第一类是简单的液滴运动控制,液态金属保持液滴的形态(高表面张力),通常是在液态金属液滴表面覆盖一层磁性颗粒如铁。液滴可在平面内被控制做一些简单的定向移动。第二种是将磁性颗粒均匀分布在液态金属内部,从而构建一种泥浆状的液态金属混合物,从而使更为复杂的运动控制,包括磁性驱动、自修复、变形、打印以及可逆的书写等。

5dc4a706-730e-11ee-939d-92fbcf53809c.png

图6 通过对液态金属添加磁性颗粒从而实现多种磁性控制

电磁场控制

由于液体金属优秀的导电性,将通电的液态金属置于磁场中,便可以使电磁交互感应作用于液态金属上,从而实现液态金属运动的电磁场控制。目前的操纵方式大致可分为三类:变化磁场产生电流、直接对磁场中液态金属注入高电流以及磁场中液态金属的电化学电流。

5dd8459a-730e-11ee-939d-92fbcf53809c.jpg

图7 电磁场作用下液态金属的可控运动

声场和光场控制

由于液态金属流体的特性,其很容易通过吸收声波的能量来实现声场对液态金属的控制。目前声场主要分为高频(高达MHz)和低频( ~ 40 Hz)控制。高频的高能声波可以将液态金属震荡形成尺寸可控的纳米级液滴并促成一些反应,同时可实现对液态金属的可控运动。而低频声波则可实现特别的流体现象,例如不同的表面图案、流体震动以及轨道运行等。而光场控制则主要是基于液态金属的高热导以及较低的热容,在激光的照射下,液态金属会呈现出明显的升温现象。不均匀的温度分布会是液态金属在溶液中受到可控力的作用,从而实现定向运动和可控形变。同时,一些光敏材料也可用于液态金属的光场控制。

5de26160-730e-11ee-939d-92fbcf53809c.jpg

图8 声场和光场作用下的液态金属的可控运动,形变以及独特的表面图案

其他控制方式

除了以上系统研究过的控制方式,其他方式如液态金属表面和衬底界面调控、微尺度控制、介电泳以及电迁移等也得到探索。

挑战与机遇

综上所述,目前关于液态金属的可控流动与操纵的研究取得很大的进展,但是如何实现高效且简便的控制方式,如何提高打印过程的可操作性和结构分辨率以及如何实现高精度的控制还有很大的探索空间。同时,对于溶液环境中的液态金属,其界面状态(包括表面氧化物的动态形成与溶解)一直没有得到有效的解释。这些目前阶段存在的问题都还需要进一步的研究。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 微流控芯片
    +关注

    关注

    13

    文章

    228

    浏览量

    18643
  • 电磁场
    +关注

    关注

    0

    文章

    745

    浏览量

    46817

原文标题:综述:液态金属的可控流动与操纵

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    瞬时对焦!液态镜头是个什么黑科技?

    相信工程师们在日常的工作中一定听到过【液态镜头】这个词,也见过手机厂商发布的以液态镜头为产品亮点的产品,那么你清楚什么是液态镜头吗?在工业生产中,液态镜头到底有多实用?本期小明就给大家
    的头像 发表于 04-23 08:24 120次阅读
    瞬时对焦!<b class='flag-5'>液态</b>镜头是个什么黑科技?

    熔体流动速率测试仪:探索塑料材料的流动

    熔体流动速率测试仪是一种用于测量塑料等高分子材料熔体流动特性的重要设备。通过这项测试,我们可以深入了解材料的流动性、加工性能以及其潜在的应用领域。本文将详细介绍熔体流动速率测试仪的工作
    的头像 发表于 01-22 11:22 191次阅读
    熔体<b class='flag-5'>流动</b>速率测试仪:探索塑料材料的<b class='flag-5'>流动</b>性

    介电填料诱导杂化界面助力高负载锂金属电池

    采用高安全和电化学稳定的聚合物固态电解质取代有机电解液,有望解决液态金属电池的产气和热失控等问题。
    的头像 发表于 01-22 09:56 278次阅读
    介电填料诱导杂化界面助力高负载锂<b class='flag-5'>金属</b>电池

    全固态锂金属电池负极界面设计

    全固态锂金属电池有望应用于电动汽车上。相比于传统液态电解液,固态电解质不易燃,高机械强度等优点。
    的头像 发表于 01-16 10:14 312次阅读
    全固态锂<b class='flag-5'>金属</b>电池负极界面设计

    小米“液态透镜”、“液态潜望”模组专利

    液态透镜特征:两种折射率不同且不相混合的液体,一种是可导电的水性溶液,另一种是不导电的矽酮油溶液,并将兩种液体封装在兩面均透明的圆筒型容器中。
    的头像 发表于 01-04 16:29 376次阅读
    小米“<b class='flag-5'>液态</b>透镜”、“<b class='flag-5'>液态</b>潜望”模组专利

    固态锂金属电池内部固化技术综述

    高能量密度锂金属电池是下一代电池系统的首选,用聚合物固态电解质取代易燃液态电解质是实现高安全性和高比能量设备目标的一个重要步骤。
    的头像 发表于 12-24 09:19 1753次阅读
    固态锂<b class='flag-5'>金属</b>电池内部固化技术<b class='flag-5'>综述</b>

    高压放大器在镓基液态金属微型马达驱动实验研究中的应用

    实验名称:高压放大器在镓基液态金属微型马达驱动研究中的应用研究方向:新型材料测试目的:微/纳马达是一种以实际应用为基础的动力装置,在科学研究方面的价值也尤为重要。在微/纳米尺度下它可以接受能量注入
    的头像 发表于 12-02 08:01 162次阅读
    高压放大器在镓基<b class='flag-5'>液态</b><b class='flag-5'>金属</b>微型马达驱动实验研究中的应用

    液态金属基自振荡异质膜材料,可用于电磁感应湿环境能量收集

    10月22日,记者从中国科学院青岛生物能源与过程研究所(以下简称青岛能源所)获悉,该所绿色反应分离与过程强化技术中心李朝旭研究员带领的高端材料制造组群研究团队,成功开发液态金属基自振荡异质膜材料,可用于电磁感应湿环境能量收集。
    的头像 发表于 10-29 09:23 367次阅读
    <b class='flag-5'>液态</b><b class='flag-5'>金属</b>基自振荡异质膜材料,可用于电磁感应湿环境能量收集

    哈尔滨工业大学研发液态金属磁性微型软体机器人

    据了解,相比刚性机器人,液态金属磁性微型软体机器人具有高度变形能力和灵活性,可根据外界磁场变化改变自身形状和运动状态。
    发表于 10-24 14:59 382次阅读
    哈尔滨工业大学研发<b class='flag-5'>液态</b><b class='flag-5'>金属</b>磁性微型软体机器人

    双向可控硅和单向可控硅的基本功能

    双向可控硅,也被称为反向可控晶闸管(Reverse Conducting Thyristor)或双向触发器(Bilateral Trigger Thyristors);在电气工程领域中,主要用于交流电路的控制。它能够通过双向触发实现电流的
    的头像 发表于 08-26 11:49 1439次阅读

    双向可控硅与单向可控硅的区别

    双向可控硅,也被称为反向可控晶闸管(Reverse Conducting Thyristor)或双向触发器(Bilateral Trigger Thyristors);在电气工程领域中,主要用于交流电路的控制。它能够通过双向触发实现电流的
    的头像 发表于 08-26 11:48 1225次阅读

    深度学习辅助的3D打印液态金属传感系统

    液态金属(LM)表现出与金属相当的高导电性和源自其液态独特的可变形性,因此被认为是高性能软电子器件的有前途的材料。
    的头像 发表于 08-14 09:57 840次阅读
    深度学习辅助的3D打印<b class='flag-5'>液态</b><b class='flag-5'>金属</b>传感系统

    三坐标测量仪的操纵盒介绍

    角度之间进行切换5、操纵杆:左边操纵可控制CMM的Z轴方向运动。右边的操纵可控制CMM的X、Y方向运动。右边
    的头像 发表于 07-19 15:16 783次阅读
    三坐标测量仪的<b class='flag-5'>操纵</b>盒介绍

    氢能产业链解析——储氢:液态储氢技术

    从原理上看,氢气在一定的低温下会以液态形式存在。因此,可以使用一种深冷的液氢储存技术——低温液态储氢。低温液态储氢先将氢气压缩,在经过节流阀之前进行冷却,经历焦耳-汤姆逊等焓膨胀后,产生混合液体,将液体分离后继续进行上述循环,得
    的头像 发表于 05-24 14:18 5113次阅读
    氢能产业链解析——储氢:<b class='flag-5'>液态</b>储氢技术

    一种具有低表面张力和优异热导率的液态金属热界面材料

    企业责任,以客户需求为导向,不断在高性能热界面材料领域开展前沿研究,为客户提供性能更优良的原创产品。 03 图文导读 图1.液态金属的制备流程示意图。   图2.(a)理想固体基质上的一滴液体
    的头像 发表于 05-12 09:15 506次阅读
    一种具有低表面张力和优异热导率的<b class='flag-5'>液态</b><b class='flag-5'>金属</b>热界面材料