0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

全固态锂金属电池负极界面设计

清新电源 来源:清新电源 2024-01-16 10:14 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

研究背景

全固态锂金属电池有望应用于电动汽车上。相比于传统液态电解液,固态电解质不易燃,高机械强度等优点。然而,锂枝晶生长问题限制了全固态锂金属电池的推广。锂枝晶的生长机理尚未研究清楚。通常认为固态电池中锂枝晶有两种生长模式,一种是锂枝晶从锂负极穿入电解质(由外而内模式),另一种是锂金属直接在电解质内部成核并生长到外部电极(由内而外模式)。为控制锂枝晶由内而外生长,可以增加电解质的疏锂性,降低电解质的电子电导率。对于由外向内的锂枝晶生长,此前的研究致力于提高固态电解质的机械强度、均匀性和致密度。然而,即使制备了无定形电解质和单晶固态电解质,由外向内的锂枝晶生长仍然发生。主要原因是锂负极会与固态电解质发生化学和电化学反应,从而改变固态电解质的力学性能。另一些研究旨在提高固态电解质与锂金属的化学和电化学稳定性。

石榴石型全固态电解质Li7La3Zr2O12(LLZO)通常被认为是对锂稳定的,并用作研究锂沉积的本征机理。然而,当有过电位施加在电解质上用来驱动锂沉积,LLZO和锂之间会发生电化学反应。电化学反应会将电子注入电解质中并引起相变,这不仅在电解质内部产生应力和裂纹,而且破坏了锂离子传导通道,助长了锂枝晶生长。Li3PS4(LPS)和Li3YCl6(LYC)与锂金属的稳定性更差,因而锂枝晶生长更为明显。因此,寻找对锂金属在热力学上稳定的新型固态电解质迫在眉睫。除了固体电解质的力学和化学/电化学性能外,在锂剥离过程中,锂金属与固态电解质的界面处也会形成空隙,这增加了电池的过电位,促进了电解质的还原和锂枝晶的生长。

在锂金属负极和固态电解质间插入中间层可以同时避免电解质还原和锂金属内空隙形成。中间层的离子和电子电导率、疏锂性影响锂沉积效果。当插入电子导电和亲锂界面相中间层(如Au、Al和Sn),锂金属与电解质界面的空隙被抑制,但高电子电导率加速了电解质的还原。使用疏锂或高离子导电中间层,(Li3OCl、LiF和 LiF-Li3N)可抑制电解质还原,但由于锂扩散率低,会促进空隙的形成。最近报道的多孔疏锂/亲锂梯度夹层,则可同时抑制空隙形成和电解质还原。但夹层的电子离子电导率和疏锂性对锂沉积的影响并未被考虑。如果夹层具有低电子电导率、高离子电导率和疏锂性,从而使得锂沉积在负极和中间层的界面上而非固态电解质表面,那么这个方法是可行的。但是,如果中间层是亲锂性的,并且具有高电子电导率但离子电导率低,则锂会沉积在固态电解质表面,从而导致固态电解质被还原。中间层的疏锂性、电子/离子传导特性与锂枝晶抑制能力之间的关系对理解全固态电池至关重要,但尚未得到系统研究。

成果简介

最近,美国马里兰大学王春生教授等以Li7N2I-碳纳米管(LNI-CNT)中间层和LNI-Mg中间层为例,通过界面性质调控,将锂沉积稳定性与中间层的离子和电子电导率以及疏锂性相关联。LNI固体电解质具有高离子电导率,低电子电导率、高疏锂性和高电化学稳定性,而碳纳米管具有高疏锂性、高电子电导率和低振实密度。因此,将LNI以不同比例与碳纳米管混合,可以形成离子和电子电导率可变的多孔疏锂中间层。LNI-Mg中间层的Mg可以从中间层迁移到锂负极,从而在中间层内形成梯度电子电导率,从而降低层间厚度,增强锂枝晶的抑制能力。

对于LNI-CNT,90微米的LNI-5%CNT中间层使锂能够在锂/LNI-CNT界面上成核,然后随着锂的沉积/剥离中可逆地渗透到多孔夹层或从中间层内拔出(图1)。中间层内的锂核会随着锂的生长被完全融合,并在锂剥离过程中完全拔走。通过中间层设计控制锂的成核和生长,LNI-5% CNT使得Li/LNI/Li电池能够以4.0mA/cm² / 4.0mAh/cm²的高电流密度/容量可逆循环超过600小时。对于LNI-Mg中间层,18.5微米LNI-Mg中间层使Li4SiO4@LiNi0.8Mn0.1Co0.1O2/Li6PS5Cl/20µm-Li全电池实现了2.2 mAh/cm2面容量,并在60°C下循环350次后,容量保持率为82.4%。本研究表明通过中间层的设计可以显著提高全固态电池的枝晶抑制能力。

6988ddc8-b3fa-11ee-8b88-92fbcf53809c.png

图1 锂/中间层界面的演变,包括锂的成核、锂的生长和锂的剥离过程。

研究亮点

(1) 同时考虑锂在中间层内成核和生长,提出了一种用于抑制全固态锂金属电池锂枝晶生长的中间层设计准则

(2) 设计了多孔,疏锂,混合离子/电子导电的LNI-CNT中间层和电子梯度导电的LNI-Mg中间层,从而大大提高了全固态电池的抑制锂枝晶能力和可逆性

图文导读

本工作中使用的Li7N2I固态电解质具有高离子电导率和低电子电导率,高憎锂性以及高电化学稳定性,而碳纳米管具有高憎锂性、高电子导电性和低压实密度。因此,将不同比例的LNI电解质和碳纳米管混合可以形成离子电导率和电子电导率可调的多孔憎锂中间层。电化学实验,表征和模拟计算表明,中间层的电子/离子导电性,憎锂性能显著影响锂在中间层的形核和生长过程。其中,混合离子电子电导,憎锂的中间层能避免锂在电解质表面沉积,也能防止锂剥离时锂金属与电解质脱接触,因而有利于抑制锂枝晶生长(图2)。

69a9b692-b3fa-11ee-8b88-92fbcf53809c.png

图2 不同性质(离子导电、电子导电和混合导电)中间层对锂剥离/沉积行为的影响。LNI-5% CNT中间层使得Li/LNI/Li电池实现了大于4.0 mA/cm2 / 4.0 mAh/cm2 的临界电流密度/容量(图3)。电池的过电势偏离欧姆定律表明锂从锂负极渗入多孔LNI-5% CNT中间层,增加了锂与中间层的接触面积。

69d6ff9e-b3fa-11ee-8b88-92fbcf53809c.png

图3 LNI-CNT混合导电中间层的抑制锂枝晶能力。

图4a和b展示了在锂沉积过程中Li//Li对称电池在混合导电中间层内部的成核区域(图4a)和生长区域(图4b)。锂沉积过程集流体上施加过电势 η ,锂会在中间层内局部电化学势低于临界成核 过电位(ηc)的区域成核(图4a)。成核区域与电化势分布有关。而锂的生长区域则决于锂沉积容量和中间层的孔隙率(图4b)。锂在中间层内沉积的稳定性取决于锂成核区域长度(ln)、锂生长区域长度(lg)和中间层长度(li)以及憎锂性(图4c-d)。当锂成核区域长度(ln)小于或者等于锂生长区域长度(lg)且二者同时小于中间层长度(li)时,锂生长能消除成核的影响,避免循环过程中的枝晶形成。

6a0dd910-b3fa-11ee-8b88-92fbcf53809c.png

图4 中间层的设计准则。

LNI-Mg中间层中由于Mg从中间层迁移到锂负极而形成中间层内部的梯度电子导电性,有利于降低中间层厚度并增强抑制锂枝晶的能力。18.5µm的具有梯度电子导电性的LNI-25%Mg中间层使得Li4SiO4@NMC811/LPSC/Li全电池在60℃下进行350个循环,其容量保持率达到了82.4%。(图5)

6a4f3b58-b3fa-11ee-8b88-92fbcf53809c.png

图5 混合导电中间层的优化以及全电池性能。

总结与展望

在这项工作中,作者同时考虑锂在中间层内成核和生长,提出了一种用于抑制全固态锂金属电池锂枝晶生长的中间层设计准则。在理论模拟和实验验证的指导下,作者设计了多孔,疏锂,混合离子/电子导电的LNI-CNT中间层和电子梯度导电的LNI-Mg中间层,从而大大提高了全固态电池的抑制锂枝晶能力和可逆性。所提出的中间层设计准则为开发更安全、更高能量密度的全固态锂金属电池提供了一条途径。







审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 碳纳米管
    +关注

    关注

    1

    文章

    158

    浏览量

    17662
  • 电解质
    +关注

    关注

    6

    文章

    827

    浏览量

    21238
  • 固态电池
    +关注

    关注

    10

    文章

    751

    浏览量

    29440
  • 锂金属电池
    +关注

    关注

    0

    文章

    145

    浏览量

    4900

原文标题:马里兰大学帕克分校王春生 Nature Energy:全固态锂金属电池负极界面设计

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    适用于LTO电池全固态电池的充放电参考设计

    随着对安全、紧凑且长寿命充电电池需求的增长,LTO(钛酸盐)电池全固态电池正被广泛应用于物联网、汽车及工业领域。为了充分发挥这类
    的头像 发表于 12-08 09:38 325次阅读
    适用于LTO<b class='flag-5'>电池</b>及<b class='flag-5'>全固态</b><b class='flag-5'>电池</b>的充放电参考设计

    界面层创新:全固态电池稳定性实现突破性提升

    固体电解质因高钠离子电导率和优异热稳定性,成为全固态电池的核心材料选择。然而,固体电解质与钠金属负极之间的高界面阻抗,以及充放电过程中钠枝
    的头像 发表于 11-28 11:40 2020次阅读

    全固态电池真的要“上车”了吗?

    固态电池的消息一直很多人关注,前几天看到央视新闻的报道,广汽集团已建成国内首条大容量全固态电池产线,目前正在小批量测试生产。据悉全固态
    的头像 发表于 11-25 14:12 418次阅读

    金属电池稳定性能:解决固态电池界面失效的新策略

    ,成功解决了这一难题。界面空隙:固态电池的致命弱点MillennialLithium在传统金属阳极中,尤其是在低堆压条件下进行
    的头像 发表于 10-23 18:02 1357次阅读
    <b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>稳定性能:解决<b class='flag-5'>固态</b><b class='flag-5'>电池</b><b class='flag-5'>界面</b>失效的新策略

    重要突破!中科院团队实现全固态金属电池长循环寿命

    全固态金属电池因其潜在的高能量密度和本征安全性,被视为下一代储能技术的重要发展方向。然而,金属
    的头像 发表于 10-09 18:05 624次阅读
    重要突破!中科院团队实现<b class='flag-5'>全固态</b><b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>长循环寿命

    攻克无负极金属电池难题的新钥匙

    “终极选择”的无负极金属电池。这种电池在制造时直接使用铜箔作为负极基底,完全摒弃了传统的石墨等
    的头像 发表于 09-11 18:04 539次阅读
    攻克无<b class='flag-5'>负极</b><b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>难题的新钥匙

    全固态电池火爆!中国推出团体标准,宝马全固态电池汽车测试上路

    5月22日,中国汽车工程学会正式发布《全固态电池判定方法》的团体标准,首次明确了全固态电池的定义,解决了行业界定模糊、测试方法缺失等问题,为技术升级和产业化应用奠定基础。 “
    发表于 05-25 01:53 1909次阅读

    高临界电流密度固态电池单晶的合成

    金属一直以来被认为是高能量密度电池的理想负极材料。不幸的是,金属
    的头像 发表于 03-01 16:05 1591次阅读
    高临界电流密度<b class='flag-5'>固态</b><b class='flag-5'>电池</b>单晶<b class='flag-5'>锂</b>的合成

    全固态电池预计2027年开始装车 2030年可以实现量产化应用

    电池凭借其优异性能有望拓宽锂电池的应用场景,预计2030年全球固态电池出货量将超600GWh。硫化物固态电解质、
    的头像 发表于 02-26 15:16 1294次阅读

    超声波焊接有利于解决固态电池的枝晶问题

    电池(SSLMBs)作为一种极具潜力的储能技术,由于其固有的高安全性和实现高能量密度的潜力备受关注。然而,其实际应用受制于严峻的界面问题,主要表现为固态电解质与
    发表于 02-15 15:08

    清华大学:自由空间对硫化物固态电解质表面及内部裂纹处沉积行为的影响

    全性的全固态金属电池的最具潜力的候选电解质材料之一。 尽管如此,仍有大量研究表明,即使在较低的电流密度下(0.5-1 mA/cm2),全固态
    的头像 发表于 02-14 14:49 740次阅读
    清华大学:自由空间对硫化物<b class='flag-5'>固态</b>电解质表面及内部裂纹处<b class='flag-5'>锂</b>沉积行为的影响

    固态电池电极与界面研究新进展:固态大牛最新Chem. Rev.综述

    或应用了多种成像、散射和光谱学表征方法,用于研究固态电池材料的独特特性。这些表征工作为金属阳极、合金负极
    的头像 发表于 02-10 10:44 1510次阅读
    <b class='flag-5'>固态</b><b class='flag-5'>电池</b>电极与<b class='flag-5'>界面</b>研究新进展:<b class='flag-5'>固态</b>大牛最新Chem. Rev.综述

    全固态金属电池的最新研究

    成果简介 全固态金属电池因其高安全性与能量密度而备受关注,但其实际应用受限于的低可逆性、有限的正极载量以及对高温高压操作的需求,这主要源
    的头像 发表于 01-23 10:52 1596次阅读
    <b class='flag-5'>全固态</b><b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>的最新研究

    北京大学庞全全硫基电池再发Nature:硫化物基全固态电池

    氧化物正极的全固态电池目前得到广泛的关注,但在高压下,正极与电解质之间不可逆的副反应以及高镍层状金属氧化物的化学机械降解阻碍了其稳定性和倍率性能。全固态
    的头像 发表于 01-20 12:33 2028次阅读
    北京大学庞全全硫基<b class='flag-5'>电池</b>再发Nature:硫化物基<b class='flag-5'>全固态</b><b class='flag-5'>锂</b>硫<b class='flag-5'>电池</b>

    王东海最新Nature Materials:全固态电池新突破

    研究背景 全固态硫(Li-S)电池因其高的能量密度、优异的安全性和长的循环寿命在下一代电池技术中展现出巨大潜力。然而,全固态Li-S
    的头像 发表于 01-09 09:28 1857次阅读
    王东海最新Nature Materials:<b class='flag-5'>全固态</b><b class='flag-5'>锂</b>硫<b class='flag-5'>电池</b>新突破