0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

非球面镜和球面镜的差别及应用

上海昊量光电设备有限公司 2023-10-19 08:16 次阅读

球体是旋转对称的光学器件,其形状对应于球面的截面。曲率半径与几何中心的距离是不变的。这意味着只需指定一个参数,即半径R,就可以描述光学有效的表面。由于这个参数在整个表面上是恒定的,球体在制造方面具有成本优势。

球面的制造优势

在生产成本方面,球面取得了明显的优势。这要归功于它的几何形状。球体表面的均匀形状确保了简单的制造过程和更短的生产时间,特别是对于小直径的产品,因为在一个支撑体上可以同时制造多个光学器件。这也适用于光学检测和测量的过程,因为可以在整个表面上测量出均匀的、可以快速生成的结果。触觉测量方法(如轮廓仪或三维坐标测量机),但也有光学测量方法,如干涉仪和计算机生成的全息图(CGH)被用于测量球面。与其他光学方法一样,测量仪器的选择是基于成本和效益的比较,以便能够决定使用哪种方法。

球面的应用领域

球面的应用范围很广,例如在计量学、航空航天(安装在卫星内的光谱仪)或医疗技术(用于检查眼睛前段的裂隙灯)。由于低制造成本、快速生产时间和广泛的光学应用的结合,球体是光学市场的一个组成部分,并以非常好的价格性能比来说服人们。

球面单透镜的应用优化

根据不同的形状,球体的收集、散射或聚焦特性被用来将入射光线折射到所需程度。例如,在成像系统中,高图像质量起着决定性作用,并伴随着低成像误差。此外,它还可以通过考虑各种因素来提高--取决于现有系统的要求。这些因素包括,例如,所用光源的位置或有效孔径的选择。通过使用几个球体也可以提高图像质量,但这是一个关于镜头形状和光学系统现有空间条件的问题。通过选择有效光圈,也可以减少球面像差。其原因是对周边入射光线的阻挡。如果没有光圈,外围增加的曲率和由此产生的更强的光线折射会促进球面像差的发展。

多球面透镜组合

消色器是由一个或多个收集和分散透镜组合而成的。通常使用一个低折射率的正凸透镜和一个低折射率的负凹透镜,并将其粘合在一起。这样就形成了一个光学系统,改善了球差和色差。例如,在摄影领域的摄影镜头中,就使用了消色差。

非球面透镜

如果在一个光学装置中必须考虑各种因素,如高图像质量、数值孔径或最大限度地节省空间,非球面是最佳选择。非球面透镜是旋转对称的光学器件,其曲率半径在径向上偏离透镜的中心。由于这种特殊的表面几何形状,与球面透镜相比,非球面可以显著提高光学系统的成像质量。它们不同的曲率半径导致了对球面的偏离。

仔细观察镜头外围的平坦半径,就会发现与球面形状的偏差。一般来说,以下说法比较合适:当一个透镜的半径偏离球面形状时,它就是一个非球面。透镜的半径是以这样的方式确定的--如图3所示--有一个入射光线的束缚,它们相交于一个共同的焦点,从而防止球面像差。因此,非球面是一个优化的聚焦光学器件。相比之下,球体的入射光线随着与光轴的距离增加而发生更强烈的偏转,并且不在一个共同点上相遇。由球面引起的像差的结果是稍微模糊的、不清晰的图像。因此,非球体可以用来改善图像质量。

非球面的数学描述

关于他们的光学设计,非球面与球体相比有更多的自由度,这意味着可以创造出更复杂的表面。传统上,旋转对称非球面的光学有效表面是由以下非球面公式定义的:

bd41f142-6e14-11ee-9788-92fbcf53809c.png

具体参数如下:

z = 表面的弧度

h = 垂直于光轴的距离(入射高度)

R = 半径

k = 圆锥常数

A2i = 校正多项式的非球面系数

如果非球面系数为零,则表面形状对应于旋转对称的圆锥截面。表示如下:

bd4b4648-6e14-11ee-9788-92fbcf53809c.png

自从2015年出版的ISO 10110更新后,对非球面有了另一种描述。它基于一组正交的多项式,即所谓的Qbfs多项式,它对非球面的最佳拟合球面的偏转差进行建模。表面商在以下公式中给出:

bd59c8ee-6e14-11ee-9788-92fbcf53809c.png

新描述的优点是描述表面形状所需的有效数字更少。此外,最大的挠度偏差可以通过将最大的系数Am乘以这个系数的阶数的最大振幅来估计(见图4)。

bd5d7d0e-6e14-11ee-9788-92fbcf53809c.png

图4:Qm的图形描述

用非球面缩小光学系统

与传统透镜相比,非球面透镜的另一个优点是可以减少光学系统的总长度。在光束扩展领域可以找到一个例子,就是来自ashericon的单片式光束扩展器。仅由一个单一的透镜组成,通过两个透镜表面中的一个非球面化,可以实现非焦点系统,它可以扩展光束,甚至更大的光束直径,而没有开口误差。由于该系统的非焦距特性,几个单片可以连接成一排。这允许减少光学系统,同时,改变总光束直径。由ashericon开发的光束扩展系统a-BeamExpander与传统系统相比,总长度缩短了50%。下图是一个10倍放大率(M=10)的开普勒和伽利略望远镜。这是与放大率相同但长度减半的a-BeamExpander的比较。

bd84abea-6e14-11ee-9788-92fbcf53809c.png

图5:BeamExpander
与开普勒和伽利略望远镜的比较

系统减少的现象也可以在其他光学排列中发现,例如在摄影镜头内。另一个有利的副作用是重量的减少。在 "每克都很重要 "的情况下,可以实现巨大的节约,例如在卫星检查中,如哨兵-4卫星。由欧盟和欧空局的哥白尼计划发起,哨兵-4卫星通过两个高分辨率光谱仪为欧洲和北非的环境管理提供可靠的实时数据。

非球面的生产和测量

就像球面一样,非球面也可以通过各种方法生产,例如通过研磨和抛光。长期以来,人们认为非球面镜只适用于实验室、研发项目或原型建造,大批量使用不经济。随着现代制造和测量技术的发展,非球面也可以以可重复的精度进行系列生产。通过增加批量,分配设置成本,最终导致单价降低。

asphericon公司完全数字化的生产世界是全世界独一无二的。从第一次与客户接触到最终光学系统的出货,所有的过程、信息和制造步骤都由内部开发的基于软件的控制工具进行数字化控制。因此,生产流程可以得到显著的优化,通过简单的数据分析(目标/实际)提高产量,并组织数据运输,没有损失。与此相伴的是制造过程的日益自动化以及对供应商和物流过程的数字化控制。

由于在选择工具方面具有高度的灵活性,可行的光学形状的范围也大大增加。因此,非球面镜片的几何形状对成本的影响越来越小。除了材料的选择和光学元件的直径外,表面形状偏差和表面质量是影响制造成本的主要因素。

近年来,非球面镜片的测量也变得更快、更不复杂。诸如用CGH测量、干涉测量法和使用探针的触觉测量等技术已被进一步优化,制造过程本身也是如此。此外,新的测量方法已经被开发出来,如倾斜波干涉测量。这个过程使用不同的倾斜波面,只需20到30秒就能完成对光学表面的测量。测量系统在许多子孔中无接触地获取光学元件,将这些元件的干涉图案组合成一个表面形貌,并确定与目标形状的偏差。

使用非球面镜

由于非球面具有纠正球面像差的能力,因此非球面的应用范围很广,例如在计量和成像方面,以及在激光应用方面(见 "用非球面缩小光学系统 "一节中的激光扩束实例)。例如,它们是对现代荧光显微镜、投影系统或激光系统的光学设置的补充。由于在光学系统中用非球体代替球面镜,具有系统缩小的特殊优势,可以额外减轻重量,这在航空航天领域起到了决定性的作用。例如,通过减轻重量,在发送地球观测卫星时可以降低燃料消耗。

球面VS非球面最后对比

非球面镜在成像质量方面明显占优势,但这仍然反映在较高的生产/测量工作上,因此与球面镜相比成本较高。然而,这被单个透镜的节省所抵消了。下表显示了两种透镜几何形状的比较。

bdcc8a46-6e14-11ee-9788-92fbcf53809c.png

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光学
    +关注

    关注

    3

    文章

    702

    浏览量

    35690
  • 器件
    +关注

    关注

    4

    文章

    274

    浏览量

    27588
  • 非球面镜
    +关注

    关注

    0

    文章

    2

    浏览量

    5149
收藏 人收藏

    评论

    相关推荐

    光学型轮廓仪精准测量衍射非球面的新利器

    衍射非球面是一种特殊形状的光学元件,其曲率在不同方向上不均匀变化,与传统的球面形状不同,在衍射非球面上,光线通过非球面的表面时会发生衍射现象,这种衍射会使得光线的波前形状被改变,从而实
    发表于 04-28 09:07 0次下载

    SJ5900光学型轮廓仪:衍射非球面精准测量新利器

    衍射非球面是一种特殊形状的光学元件,其曲率在不同方向上不均匀变化,与传统的球面形状不同,在衍射非球面上,光线通过非球面的表面时会发生衍射现象,这种衍射会使得光线的波前形状被改变,从而实
    的头像 发表于 04-20 08:08 268次阅读
    SJ5900光学型轮廓仪:衍射<b class='flag-5'>非球面</b>精准测量新利器

    基于三维超球面的声学复眼装置,可用于全向宽带信号增强

    西安交通大学机械工程学院马富银教授课题组提出一种基于三维超球面的声学复眼装置。模仿对应多个方向的昆虫复眼系统,将多个梯度折射率的亚波长平板超表面聚焦透镜在空间中组成超球面阵列。
    的头像 发表于 03-18 10:21 157次阅读
    基于三维超<b class='flag-5'>球面</b>的声学复眼装置,可用于全向宽带信号增强

    固定焦距非球面透镜准直器产品手册

    电子发烧友网站提供《固定焦距非球面透镜准直器产品手册.pptx》资料免费下载
    发表于 01-23 09:29 1次下载

    可调焦非球面准直器产品手册

    电子发烧友网站提供《可调焦非球面准直器产品手册.pptx》资料免费下载
    发表于 01-23 09:28 0次下载

    光束匀化在荧光成像平场照明中的应用

    于准直激光器,也可用于光纤耦合光源。由于其紧凑的尺寸和精密非球面透镜的使用,激光光束成形光学器件具有出色的光学质量。由于其模块化设计和非球面镜的装配理念,光束整形器可以快速连接到光学系统中,而无需进一步
    的头像 发表于 12-05 11:25 266次阅读
    光束匀化在荧光成像平场照明中的应用

    IGBT的终端耐压结构—柱面结和球面结的耐压差异(2)

    下面我们再分析一下球面结的雪崩电压。首先对(7-17)从PN结边界到耗尽区图片积分,结果如下,
    的头像 发表于 12-01 16:25 618次阅读
    IGBT的终端耐压结构—柱面结和<b class='flag-5'>球面</b>结的耐压差异(2)

    IGBT的终端耐压结构—柱面结和球面结的耐压差异(1)

    回顾《平面结和柱面结的耐压差异1》中柱面结的示意图,在三维结构中,PN结的扩散窗口会同时向x方向和z方向扩散,那么在角落位置就会形成如图所示的1/8球面结。
    的头像 发表于 12-01 16:22 667次阅读
    IGBT的终端耐压结构—柱面结和<b class='flag-5'>球面</b>结的耐压差异(1)

    高精度粗糙度轮廓测量仪SJ5720|非球面镜片测量

    目前国内尚无专业测量设备能够检测高精度非球面镜片参数,比如微观轮廓参数、水平轴线夹角、光轴位置参数及顶点半径误差、斜率参数等,基本依赖进口,只有部分国产机型能够满足普通精度的微观轮廓Pt参数测量
    发表于 11-16 13:52 0次下载

    解析振起点爆点问题及解决方案

    问题背景: 振起点爆点问题是在激光器启动时出现的现象,即第一个点的能量过高,可能引发点烧宽等问题。接下来,我们将深入探讨振起点爆点问题的根本原因,并向您介绍一项行之有效的解决方案——使用PWM
    发表于 11-06 10:30

    高精度与高输出阻抗电流的设计与应用

    由于电流模式方法具有更好的开关性能,它在模拟电路设计中越来越受到关注。此外,在数字微电子技术中,电流模式电路的电源电压较低,适用于混合模式的应用。在许多模拟电路设计中,电流被广泛用作偏置或加载元件
    发表于 09-21 07:16

    为什么激光共聚焦显微成像质量更好?

    激光共聚焦显微原理是由LED光源发出的光束经过一个多孔盘和物镜后,聚焦到样品表面。之后光束经样品表面反射回测量系统。再次通过MPD上的针孔时,反射光将只保留聚焦的光点。最后,光束经分光片反射后在
    发表于 08-22 15:19

    基于ZEMAX的半导体激光器匀光设计

    摘要 :为了满足半导体激光器能量均匀化的应用需求,基于ZEMAX光学设计软件设计了一套光束整形匀光系统。 采用非球面镜与倒置柱面镜望远系统的透镜组合对单模半导体激光器进行准直,得到近似高斯圆光
    的头像 发表于 05-29 17:17 1231次阅读
    基于ZEMAX的半导体激光器匀光设计

    白光干涉仪可以测曲面粗糙度吗?

    测表面的形状误差以干涉条纹图形显示出来,并利用放大倍数高的显微将这些干涉条纹的微观部分放大后进行测量,以得出被测表面粗糙度,可以轻松测量曲面粗糙度。 球面镜曲率半径、粗糙度测量 针对叶片类曲面零部件
    发表于 05-23 13:58

    微透镜阵列和其实现的光束匀化简介

    微透镜阵列是由通光孔径及浮雕深度为微米级的透镜组成的阵列。它和传统透镜一样,最小功能单元也可以是球面镜非球面镜、柱镜、棱镜等,同样能在微光学角度实现聚焦、成像,光束变换等功能,而且因为单元尺寸
    的头像 发表于 05-06 10:14 950次阅读
    微透镜阵列和其实现的光束匀化简介