0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

光束匀化在荧光成像平场照明中的应用

昊量光电 来源:昊量光电 作者:昊量光电 2023-12-05 11:25 次阅读

光束匀化在荧光成像平场照明中的应用

荧光显微镜

荧光显微镜属于光学显微镜家族,基于荧光的物理效应。利用了所谓的荧光染料的颜色特性,它们被特定波长的光激发,并以不同的波长再次反射吸收的光。

荧光显微镜的应用

荧光显微镜可以进行形态学研究、纳米范围内的测量值分析以及实时可见的大多数不同文化的过程。无论是在生物化学、生物物理学还是医学领域:快速、详细地检测明亮、多彩的荧光有助于荧光显微镜的测量过程,并为新发现奠定基础。zui 佳测量结果和zui 佳分辨率需要zui精确的光学器件——无论是通过光束路径的优化和聚焦、精确安装的滤光片还是高质量的镀膜。

荧光显微镜的结构和功能原理

允许个别波长通过的特殊滤光片可确保荧光显微镜下荧光的可视化。荧光显微镜的特殊滤光片包括:

励磁滤光器

发射过滤器

二向色分束器

单独的激发滤光片允许相应波长的光通过,这是激发待检样品中特定染料所必需的。二向色镜将刺激波长反射到物镜,物镜将光束集中到标本上。从标本反 射的光集中在物镜中,在其激发态通常具有比入射光更高的波长。通过二向色镜,反射光通过发射滤光片并降低到发射波长。尚未在二向色镜处停止的刺激光的残留物在发射滤光片处被过滤掉。理想情况下,只有发射光撞击显微镜内置的检测器,并以相应的颜色可见。zui 佳测量结果需要均匀的照明,尤其是当需要几微米或几毫米的大视野时。在不均匀照明的情况下,例如,可能发生待检查分子的不均匀激活。结果:中心的分子比入射照明光束外围的分子发出更强烈的荧光。如果周边没有与中心等同地照亮,则当单独记录的图像网格稍后合并时,阴影继续出现。因此,细胞和组织样本等测量不能用于可靠的分析。这些问题可以通过使用 a|TopShapea|BeamExpander 来解决。通过使用非球面可以实现这些元素在系统中。我们的系统以其紧凑的设计、精度和zui高的光学质量而令人信服。使用光学组件a|TopShape 和 a|BeamExpander 可以将高斯光束转换为均匀的平顶轮廓,从而在整个视野中实现均匀照明。所产生的平场照明具有高空间相干性、wu与伦bi的光学性能和 > 95% 的高均匀性。分子的均匀激发和zui小的图像重叠 (5%) 可以保证让您wan全满意。

下图显示了荧光显微镜的工作原理和一般结构。

wKgZomVul5iAbSbMAADsGXIwWeI714.png荧光显微镜的工作原理

荧光显微镜应用

基于激光的荧光显微镜内的定量分析可能会因高斯光束轮廓产生的不均匀 照明而变得复杂。光源和照明光学等因素会影响均匀性。当要检查大视野 (FOV)时,这些功能尤其具有挑战性。测量图像由图像网格在荧光显微镜中生成。以边缘重叠的方式获取单个图像,并且可以在后处理中组合它们。如果照明不均匀,zui终图像的每个单独图像周围都会有变暗的边缘 - 细胞和组织样本的测量变得不可靠。光照不均匀的另一个缺点:分子激活不均匀。那些靠近光束中心的荧光比边缘的荧光更多。位于奥兰多的中佛罗里达大学光学与光子学院的一个研究团队通过将aphericon 的光束整形器 a|TopShape 和 a|BeamExpander 集成到显微镜装置中,从而克服了这些问题。平场照明 (FFI) 设置将高斯光束塑造成统一的平顶轮廓。a|TopShape 对入射激光束大小的变化具有ji高的容忍度 (± 10 %),并且以消色差方式运行。非常好的光学性能(均匀性 > 95%)可实现均匀照明,从而激活分子。此外,FFI 设置可实现无边界拼接成像,图像重叠zui小 (5%)。

定量荧光成像的平场照明


项目介绍:

高斯轮廓的不均匀光照使得基于激光的宽视场荧光显微镜的定量分析具有很高的挑战性。许多因素,包括光源和照明光学有助于均匀性。当需要几百微米或毫米尺度的大视场时,这些特性尤其困难。获得一个图像网格,使边界重叠,并在后处理中将图像拼接在一起。如果光照不均匀,zui终拼接的图像在每个单独的图像周围都有暗淡的边界。因此,细胞和组织样本的测量是不可靠的。非均匀光照的另一个缺点是分子的不均匀激活。那些zui靠近光束中心的人比那些靠近边缘的人荧光更强烈。

项目实施:

来自美国佛罗里达州奥兰多市中佛罗里达大学光学与光子学学院的一个研究团队,在他们的显微镜设置中使用非球面 TopShape 和 BeamExpander 时,可以克服这些问题(b),这两个都是由非球面组成的非常紧凑和高精度的折光光学组件。因此,他们能够呈现平场照明(FFI),其中高斯光束被塑造成一个均匀的平顶轮廓(a)。光束整形装置非常容忍入射激光束的大小变化,接受±10%,同时也是消色差的(e)。FFI 的工作距离(f)长,空间相干性高,可以在多色单分子成像中实现均匀的 epi1 和 TIRF2 照明。所使用的光学器件具有吴与伦bi的光学性能,均匀性> 95%,允许均匀的照明(c & d),从而均匀地激活分子。此外,FFI 实现了zui小图像重叠(5%)的无界缝合成像。

wKgaomVul8KAScqnAAeW2U9pXCk100.png

说明: 1,外延照明模式是指从样品的一侧进行照明和检测;

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 激光
    +关注

    关注

    19

    文章

    2755

    浏览量

    63486
  • 显微镜
    +关注

    关注

    0

    文章

    460

    浏览量

    22590
收藏 人收藏

    评论

    相关推荐

    荧光寿命成像技术在微塑料识别中的应用

    微塑料问题已成为全球关注的环境问题,其在多种生态系统中的累积导致了对野生生物及人类健康的潜在风险。荧光寿命成像(FLIM)技术作为一种先进的识别手段,在微塑料研究领域显示出巨大的应用潜力。随着塑料
    的头像 发表于 04-26 08:15 147次阅读
    <b class='flag-5'>荧光</b>寿命<b class='flag-5'>成像</b>技术在微塑料识别中的应用

    声光偏转器(AODF)在高速荧光成像中的关键作用:FIRE技术简介

    上的“High-SpeedFluorescenceImage-EnabledCellSorting”,其中通过AODF实现了一种基于高速荧光成像的细胞分选技术。而这份速度是由FIRE高速荧光
    的头像 发表于 04-12 08:15 105次阅读
    声光偏转器(AODF)在高速<b class='flag-5'>荧光</b><b class='flag-5'>成像</b>中的关键作用:FIRE技术简介

    什么是高斯光束

    图1:高斯光束和平顶光束在相同的光功率下,显示高斯光束的峰值强度是平顶光束的两倍 大多数激光束都是高斯
    的头像 发表于 04-11 06:32 127次阅读
    什么是高斯<b class='flag-5'>光束</b>

    友思特方案 | 构建缤纷:可调谐光源的荧光成像的应用

    生物荧光分析常常伴随使用多种荧光染料的需求。友思特可调谐光源荧光检测成像解决方案,结合多通道光源技术与高性能成像设备,满足丰富的生物
    的头像 发表于 04-02 17:24 154次阅读
    友思特方案 | 构建缤纷:可调谐光源的<b class='flag-5'>荧光</b><b class='flag-5'>成像</b>的应用

    功率放大器声波截面梯度的重建及其声波处理的应用

      实验名称:电压放大器声波截面梯度的重建及其声波处理的应用   实验内容:水下声信号
    发表于 03-08 17:45

    紧凑型矢量光生成系统

    紧凑型矢量光生成系统 1,概述矢量光可广泛应用于光学捕获和操纵、表面等离子体、光学加工、焦工程、量子信息处理、超分辨率显微成像、光通信等方面。上海瞬渺光电近期推出的Model
    发表于 02-28 13:20

    浅谈智能照明控制系统综合管廊的设计应用与研究

    、现代技术成果的应用也日渐广泛。照明系统作为城市综合管廊设备系统的一个重要组成部分,如何实现高效控制、节能环保等要求已经成为摆在我们面前的重要课题。经历多年的发展完善,智能照明控制
    发表于 02-27 14:52

    浅谈电子厂房照明的设计与应用

    高效照明产品要结合厂房照明质量要求从以下方面出发: 2.1高效光源选择 荧光灯是工业电子厂房用量*大的气体放电光源,是节能光源。T5和T8作光源的灯具工业电子厂房里使用量*大,合理的
    发表于 02-01 13:21

    科研团队研究出低成本叶绿素荧光成像系统

    效率、植物生理及环境胁迫等无损的测试手段。 江南大学轻工过程先进控制教育部重点实验室、江南大学物联网工程学院与其他机构组成科研团队,针对获取叶绿素荧光信号成像系统通常价格昂贵的问题,提出一种低成本叶绿素荧光
    的头像 发表于 01-15 17:26 160次阅读

    用于体内实时动态多重成像的NIR-II窗口中的荧光放大纳米晶体

    实时动态光学成像系统在生命科学和生物医学工程中一直是受到广泛关注的研究热点。该成像系统在可以实时观测样本的基础之上,还具有高灵敏度、高时空分辨率等独特优势。特别是,实时动态多重成像系统对研究由复杂
    的头像 发表于 12-21 06:34 174次阅读
    用于体内实时动态多重<b class='flag-5'>成像</b>的NIR-II窗口中的<b class='flag-5'>荧光</b>放大纳米晶体

    为什么激光共聚焦显微镜成像质量更好?

    激光共聚焦显微镜原理是由LED光源发出的光束经过一个多孔盘和物镜后,聚焦到样品表面。之后光束经样品表面反射回测量系统。再次通过MPD上的针孔时,反射光将只保留聚焦的光点。最后,光束经分光片反射后
    发表于 08-22 15:19

    基于空间结构光场照明的三维单像素成像

    图1.基于空间结构光场照明的三维单像素成像原理图 单像素成像是一种新兴的计算成像技术。该技术使用不具备空间分辨能力的单像素探测器来获取目标物体或场景的空间信息。单像素探测器具有高的时间
    的头像 发表于 08-18 06:26 249次阅读
    基于空间结构光场<b class='flag-5'>照明</b>的三维单像素<b class='flag-5'>成像</b>

    HPLC工业照明应用# 智慧照明#工业照明 工业照明控制

    照明控制
    zbd951012
    发布于 :2023年07月07日 14:09:54

    神经细胞膜电位变化的荧光成像

    所用相机: ORCA-Flash4.0 V3(C13440-20CU) 成像方法: 宽场荧光 应用描述: 电压敏感的荧光蛋白定位于细胞膜上,与离子通道相偶联。神经细胞的膜电位变化会引起该蛋白
    的头像 发表于 07-07 06:48 277次阅读
    神经细胞膜电位变化的<b class='flag-5'>荧光</b><b class='flag-5'>成像</b>

    光学成像质量评价

    从物面上任意一点发出的光波,携带着该物点的信息,本来是向着所有方向发射的,但成像镜头都有孔径光栏,限制了物点发出的光束,只接收孔径角2u 范围内的光束进入系统并传递,参与成像。超出该孔
    的头像 发表于 06-07 14:34 609次阅读
    光学<b class='flag-5'>成像</b>质量评价