0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

流水线ADC的内部结构和工作原理是什么

FPGA设计论坛 来源:未知 2023-09-26 10:25 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

点击上方蓝字关注我们

wKgZomUqTgaAbwbgAAAAxmHeATo516.png

低采样速率ADC仍然采用逐次逼近(SAR)、积分型结构以及最近推出的过采样ΣΔADC,而高采样速率(几百MSPS以上)大多用闪速ADC及其各种变型电路。然而,最近几年各种各样的流水线ADC已经在速度、分辨率、动态性能和功耗方面有了很大的提高。对于几Msps到100Msps的8位高速和16位低速模数转换器(ADC),流水线已经成为最流行的模数转换器结构,它可以涵盖很广的应用范围,包括CCD成像、超声成像、数字接收、基站、数字视频(如HDTV)、xDSL、线缆调制解调器以及快速以太网。本文介绍了流水线ADC的内部结构和工作原理
一、流水线ADC结构
图1为12位流水线ADC的结构图。输入Vin首先被采样/保持(S&H)电路所采样,同时第一级的闪速ADC把它量化为3位,此3位输出送给一3位的DAC(具有12位精度),输入信号减去此DAC的输出,放大4倍送给下一级(第二级),继续重复上述过程,每级提供3位,直到最后一级4位闪速ADC。对应某一次采样,由于每级在不同的时间得到变换结果,因此在进行数字误差校正前用移位寄存器对各级的结果先按时间对准。注意只要某一级完成了某一采样的变换,得到结果并把差值送给下一级,它就可以处理下一个采样。因此流水线操作提高了处理能力。
wKgZomUqTgaAf68cAAAnDnKkWsg078.jpg
1. 延迟时间
由于每个采样必须通过整个流水线才能得到数字误差校正所需的各个位,因此流水线ADC有数据延迟。在图1的例子中,大约要延时3个周期(见图2)。
wKgZomUqTgaAJ_QHAAAq3JTisUw080.jpg
2. 数字误差校正
大多数现代流水线ADC采用“数字误差校正”技术来大大降低对闪速ADC(即内部的每个比较器)的精度要求。图1中,3位的差值输出其动态范围是输入信号Vin的1/8,然而随后的增益只有4,因此给第二级的输入只有第二级ADC 3位范围的一半(在第一级的3位变换没有误差的情况下)。
如果第一级的3位闪速ADC的某一个比较器有很大的失调,同时输入电压又正处于此比较点上,那么就会产生不正确3位码和不正确的3位DAC输出,此时产生了不同的差值。可以证明,只要放大后的差值没有超出后续的3位ADC的范围,以后产生的LSB码加上前面不正确的3位MSB码同样能产生正确的ADC结果。实际上,四级流水线中的第一级3位闪速ADC只需4位的精度。数字误差校正不能修正最后4位闪速转换器产生的误差。但是,这里产生的任何误差要除以前面的累积增益(44),因此只要求最后一级的精度大于4位。
在图1的例子中,虽然每级产生3位,但由于级间的增益是4,每级(第一级至第四级)的有效分辨率为2位。额外的位只是用于使尾数减半,使下一级3位ADC有额外的范围进行数字校正。这种方法被称之为级间“1位重叠”。因此整个ADC的有效位数是2+2+2+2+4=12位。
3. 元件精度
数字校正不能修正每个DAC和增益放大器的增益和线性特性。特别是前端的采样保持电路,DAC需要12位的精度。但是随后各级的元件只需较低的精度(如,第二级10位精度,第三级8位,等等),因为他们的误差要除以前面的级间增益。通常利用这一事实把流水线逐级做小来进一步降低功耗。
在大多数采用CMOS和BiCMOS技术的流水线ADC中,采样/保持、DAC、加法器和增益放大器通常用乘法DAC(MDAC)的单开关电容电路来实现。限制MDAC精度的主要因素是内在的电容不匹配。纯双极型实现方法更加复杂,主要受电流源DAC和级间增益放大器中电阻不匹配影响。通常12位或更高精度都需要阻容修正和数字校正,特别是第一级。
4. 数字标定
MAX1200/MAX1201/MAX1205系列(16位1Msps、14位1Msps和2Msps ADC)采用数字标定来保证其优越的精度和动态性能。MAX1200系列是CMOS流水线ADC,它由四级4位(其中一位重叠)和最后的5位闪速ADC构成,总位数是3+3+3+3+5=17位(参见图3)。额外的1到3位是数字标定用来量化误差项来达到更高的精度,舍掉它们后,最后得到14位或16位的精度。
标定从第三级的MDAC开始。第三级以上的MDAC误差已经足够小,不必标定。第三级的输出经剩余的流水线ADC数字化后,误差项存入片内的RAM中,第三级标定后,就可以用同样的方式由第三级来标定第二级,同样,第二级标定后,再标定第一级。为了使标定免受噪声的影响,采用取平均的方法(特别是第一和第二级的MDAC)。在正常转换期间,从RAM中取出标定的误差项来调整数字误差校正后的输出结果。
wKgZomUqTgeASuBfAAAqaQM_PwU405.jpg
二、各种变型电路
从图1可以看出:根据每级的分辨率多少、最后闪速ADC的位数、是否采用数字标定和修正来提高最初几级的精度可以衍生出各种各样的流水线ADC。采样速率和分辨率部分地决定了每级采用的位数。通常,高速CMOS流水线ADC每级一般用于低位数(甚至每级只有一位,级间增益只有2),原因是CMOS比较难实现很高增益的宽带放大器。低采样速率的CMOS流水线ADC和双极型流水线ADC(即使采样速率很高)每级常采用多位数,这同时也带来了更小的数据延迟。
CMOS MAX1425/MAX1426 (10位10Msps和20Msps)系列使用流行的每级1.5位结构,每级只有1位分辨率和“0.5位重叠”,每级有一个1.5位的闪速ADC(只有2个比较器)。可以证明,利用数字误差校准,可以达到2位闪速ADC和DAC的标准MDAC同样的效果,这些转换器以20Msps速率采样10MHz输入信号时可以达到高达59dB的SNR。
MAX1444/MAX1446/MAX1448/MAX1449系列(10位40/60/80/105Msps)是最新的采用每级1.5位结构的高速甚低功耗10位ADC。它们组合了宽带低失真采样保持放大器,在整个奈奎斯特频率内以及高于奈奎斯特频率内保证了卓越的动态性能。该系列产品可用于数字接收机中的欠采样设计。
三、流水线ADC和其它ADC的比较
1. 与逐次逼近型比较
在逐次逼近(SAR)ADC中,用一个高速高精度比较器将模拟输入和前一次得到的模数转换结果通过DAC后的输出相比较,依次得到MSB到LSB的每一位,逐渐逼近输入模拟信号。SAR的这一串行工作方式从本质上限制了它的工作速度,最高约为几Msps左右,对更高的分辨率(14到16位)速度就更低。流水线ADC则不同,它是并行结构,各级同时以逐次方式得到1位或几位。虽然SAR中只需一个比较器,但是这个比较器必须高速工作(速率约为总位数×采样速率),其精度必须与ADC本身一样高,相反,流水线ADC内的比较器则不需要这一速度和精度。
当然,流水线ADC通常比相同位数的SAR占据更多的硅片面积。SAR只需一周期的延迟时间(=1/Fsample)就得到结果,而流水线ADC需要3或更多周期的延迟。与流水线ADC一样,12位精度以上的SAR也需要某些形式的校正和标定。
2. 与闪速型比较
尽管流水线ADC是并行机制,但它还需要DAC的精密转换和级间增益放大,因此存在建立时间问题。纯闪速型ADC不同,它有大量的比较器,每个比较器由宽带,低增益前置放大和锁存器构成。该前置放大器不像流水线ADC中的放大器,它只需提供增益,不需要线性和精度,只是比较器的触发点要很精确。因此流水线ADC速度根本比不上设计得很好的闪速型ADC.
虽然超高速8位闪速ADC(及各种合并/插值变体)的采样速率高达1.5Gsps(比如MAX104/MAX106/MAX108),但是很难找到10位的闪速ADC,特别是12位及高于12位的ADC还没有商用化。这是因为闪速ADC分辨率每增加1位,比较器数量就增加1倍,同时每个比较器的精度必须增加1倍。流水线ADC则不同,它的复杂性随分辨率线性增加,不是指数增加。
在相同的采样速率下,流水线ADC比闪速ADC消耗功率少得多。流水线ADC不易受比较器亚稳态的影响。闪速ADC中的比较器亚稳态会导致火花码错误(即ADC输出不可预测、不稳定结果的情况)。
3. 与Σ-Δ型比较
过采样/Σ-Δ型ADC多用于带宽限于22KHz以内的数字音响中。但是最近一些Σ-Δ型转换器已经在12到16位的分辨率下达到了1至2MHz的带宽。它们通常是高阶的Σ-Δ调制器(比如4阶或更高),同一个多位的ADC和多位的DAC一起工作,主要应用于ADSL。Σ-Δ型转换器无需校正/标定,即使是16到18位分辨率,也不需要模拟输入前的陡峭滚降的抗混叠滤波器,因为它的采样频率远远高于有效带宽,它由后端的数字滤波器来处理混叠问题。Σ-Δ型转换器的过采样本质还把模拟输入中的任何系统噪声“平均滤除”。
但是Σ-Δ型转换器是以牺牲速度换取分辨率的。每输出一次采样结果都需要对输入采样很多次(比如至少16次,甚至更多),这就需要Σ-Δ调制器中模拟元件的工作速率要比最终数据输出速率快很多。数字滤波器的设计比较繁琐,另外,它也占据了一些硅片面积。目前,最快的高分辨率Σ-Δ型转换器还达不到几MHz的带宽。像流水线ADC一样,Σ-Δ型转换器也有延迟。
四、结论
流水线ADC结构适合于几Msps到100Msps采样速率,其复杂性随分辨率的增加只是线性(而不是指数)增加,具有高速、高精度和低功耗特性,适用于各种场合,特别是数字通讯领域,在这些领域中转换器的动态性能经常比微分非线性(DNL)和积分非线性等传统的ADC特性更重要。在大多数的应用中,流水线ADC的数据延迟都无关紧要。
MAXIM一直致力于发展新型转换器来增强其流水线ADC业务,包括马上就要公布的高性能的12位20/40/60Msps转换器MAX1420/MAX1421/MAX1422。MAXIM的流水线ADC使整个MAXIM的ADC系列更加丰富和完整。

wKgZomUqTgeAa8ecAAAJM7aZU1A862.png

有你想看的精彩 至芯科技FPGA就业培训班——助你步入成功之路、9月23号北京中心开课、欢迎咨询! 解析高速ADC和DAC与FPGA的配合使用 基于FPGA的图像实时处理系统设计

wKgZomUqTgeAMWW4AABUdafP6GM414.jpg

扫码加微信邀请您加入FPGA学习交流群

wKgZomUqTgeAPNbwAABiq3a-ogY052.jpgwKgZomUqTgeAE9ARAAACXWrmhKE685.png

欢迎加入至芯科技FPGA微信学习交流群,这里有一群优秀的FPGA工程师、学生、老师、这里FPGA技术交流学习氛围浓厚、相互分享、相互帮助、叫上小伙伴一起加入吧!


原文标题:流水线ADC的内部结构和工作原理是什么

文章出处:【微信公众号:FPGA设计论坛】欢迎添加关注!文章转载请注明出处。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1656

    文章

    22288

    浏览量

    630386
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    流水线基本结构

    3级流水线(Cortex-M0) 分为以下三个阶段: 取指(Fetch):从存储器中读取指令。 解码(Decode):解析指令的操作类型和操作数。 执行(Execute):执行指令(如算术运算、内存
    发表于 11-21 07:35

    如何更好地选择工业流水线上用的条码扫码器?

    在工业生产与物流分拣的自动化浪潮中,条码扫码器已成为流水线高效运转的“眼睛”。无论是精密零部件的追溯管理,还是仓储货物的快速核验,一款适配的工业扫码器都能显著降低人工误差、提升生产效率。但面对市场上
    的头像 发表于 11-05 15:49 119次阅读
    如何更好地选择工业<b class='flag-5'>流水线</b>上用的条码扫码器?

    激光振镜运动控制器在流水线激光打标上的应用

    正运动流水线激光打标解决方案
    的头像 发表于 08-05 11:26 792次阅读
    激光振镜运动控制器在<b class='flag-5'>流水线</b>激光打标上的应用

    流水线扫码升级选NVF230!工业二维码读码器方案实测

    在现代流水线生产中,给每件产品贴上独特的“电子身份证”——DPM条码,再用工业二维码读码器实时追踪定位,早已是保障高效运转的关键操作。但轮到饮料行业,给瓶身或瓶盖上的DPM条码“打卡”,却成了让不少
    的头像 发表于 07-17 15:09 384次阅读
    <b class='flag-5'>流水线</b>扫码升级选NVF230!工业二维码读码器方案实测

    如何判断感应电机内部结构的故障?

    感应电机作为现代工业中应用最广泛的动力设备之一,其内部结构复杂,故障类型多样。准确判断感应电机内部结构的故障,不仅关系到设备的正常运行,还直接影响生产效率和安全性。本文将详细介绍感应电机内部结构故障
    的头像 发表于 07-06 07:11 693次阅读

    自动化开装封码流水线数据采集解决方案

    在智能制造加速推进的时代背景下,自动化开装封码流水线广泛应用于食品、药品、日化、电子等众多行业,承担着产品自动开箱、装填、封箱、贴标及码垛的核心生产任务。随着生产规模扩大和精细化管理需求的提升,对流水线
    的头像 发表于 06-27 15:56 539次阅读
    自动化开装封码<b class='flag-5'>流水线</b>数据采集解决方案

    面包成型流水线数据采集远程监控系统

    该食品加工企业主要从事多种口味的面包生产及销售,拥有一整条完整的面包成型流水线,能够自动进行面块切割、整平折叠、多次擀薄、冷库发酵、包油加馅、排盘等工序,各个变频器和伺服通过PLC进行集中控制,要求
    的头像 发表于 06-16 17:11 520次阅读
    面包成型<b class='flag-5'>流水线</b>数据采集远程监控系统

    远程io模块在汽车流水线的应用

    在汽车制造领域,生产流水线的高效、稳定运行是保障产品质量与生产效率的关键。随着工业 4.0 和智能制造理念的深入,汽车生产企业对流水线自动化控制提出了更高要求,不仅要实现设备间的精准协同作业,还需
    的头像 发表于 06-11 15:26 507次阅读

    工业4.0时代,为什么你的流水线必须配备固定式扫码器?

    地提高生产效率。在高速运转的生产线上,人工扫码速度慢且易疲劳,而固定式扫码器可以持续稳定地工作,以毫秒级的速度快速识别流水线上产品的一维及二维条码,减少了产品在扫描环
    的头像 发表于 06-09 16:12 412次阅读
    工业4.0时代,为什么你的<b class='flag-5'>流水线</b>必须配备固定式扫码器?

    工业流水线上用的条码扫码器,如何选择与使用?

    在现代工业自动化生产中,条码扫码器(又称工业读码器)作为数据采集的关键设备,广泛应用于流水线上,有效提升了生产效率并减少了人为错误。然而,面对市场上种类繁多、功能各异的条码扫码器,如何正确选择并
    的头像 发表于 05-14 15:18 658次阅读
    工业<b class='flag-5'>流水线</b>上用的条码扫码器,如何选择与使用?

    RISC-V五级流水线CPU设计

    本文实现的CPU是一个五级流水线的精简版CPU(也叫PCPU,即pipeline),包括IF(取指令)、ID(解码)、EX(执行)、MEM(内存操作)、WB(回写)。
    的头像 发表于 04-15 09:46 1355次阅读
    RISC-V五级<b class='flag-5'>流水线</b>CPU设计

    电压调节芯片SG3525内部结构及功能

    电子发烧友网站提供《电压调节芯片SG3525内部结构及功能.pdf》资料免费下载
    发表于 03-21 16:27 1次下载

    机械自动化流水线设计中常见的结构动图

    等。 今天给大家分享一些机械自动化流水线设计中常见的一些结构,这些动态图很直观,有助于大家了解其原理,非常好懂。 步进输送机构   包装线  拾取机械手   货物分选   分选   机械手上料   传送机构   加工模块   并
    的头像 发表于 02-17 17:21 1395次阅读
    机械自动化<b class='flag-5'>流水线</b>设计中常见的<b class='flag-5'>结构</b>动图

    工业二维码条码扫描器流水线条码扫描

    在工业生产的广阔舞台上,工业二维码条码扫描器以其卓越的耐用性和高效的扫描能力,成为了连接自动化生产与信息管理不可或缺的桥梁。它们不仅是工厂流水线上的“慧眼”,更是提升生产效率、保障产品质量的得力助手
    的头像 发表于 01-07 16:07 903次阅读
    工业二维码条码扫描器<b class='flag-5'>流水线</b>条码扫描

    智能吉他的内部结构

    智能吉他的内部结构是怎么样的?我的电话是13316312382,谢谢
    发表于 12-22 17:15