0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

卷积神经网络模型训练步骤

工程师邓生 来源:未知 作者:刘芹 2023-08-21 16:42 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

卷积神经网络模型训练步骤

卷积神经网络(Convolutional Neural Network, CNN)是一种常用的深度学习算法,广泛应用于图像识别、语音识别、自然语言处理等诸多领域。CNN 模型训练是将模型结构和模型参数相结合,通过样本数据的学习训练模型,使得模型可以对新的样本数据进行准确的预测和分类。本文将详细介绍 CNN 模型训练的步骤。

CNN 模型结构

卷积神经网络的输入是一个三维数据,通常表示为 (height, width, channels)。其中,height 表示图片的高度,width 表示图片的宽度,channels 表示图片的通道数,比如 RGB 彩色图像有三个通道,灰度图像只有一个通道。

CNN 模型的核心组成部分是卷积层和池化层。卷积层通过卷积核来卷积输入数据,输出卷积之后得到的特征图。池化层用于压缩特征图,减少特征图的大小,同时保留特征。最后,再经过全连接层和 softmax 函数输出分类结果。

CNN 模型训练步骤

CNN 模型训练包含以下主要步骤。

1. 数据准备

CNN 模型训练的第一步是数据准备。输入数据通常由许多图片组成,这些图片需要被标记为不同的类别。同时,数据需要被拆分为训练集和验证集两部分。训练集用于模型的训练,验证集用于验证模型的准确性。训练集和验证集的比例通常为 7:3 或 8:2。

2. 特征提取

CNN 模型的第一层是卷积层,用于提取图片的特征。卷积层通过卷积核在图片上进行卷积操作,得到一个特征图。卷积核的大小和数量是需要调整的超参数,通常通过交叉验证进行选择。卷积层后可以添加池化层来减少特征图的大小,进一步降低模型计算量。

3. 模型训练

CNN 模型的训练需要使用反向传播算法和优化器来更新模型参数,使得模型可以更好地预测输入数据。常用的优化器有 Adam、SGD、RMSProp 等。模型的训练通常会进行多次迭代,每次迭代称为一个 epoch。在每个 epoch 中,模型会用训练集数据进行前向传播和反向传播,通过优化器进行模型参数的更新,直到模型的损失函数收敛。

4. 模型评估

CNN 模型训练结束后,在验证集上进行模型评估以判断模型的性能。常用的评估指标有准确率、精确率、召回率、 F1 分数等。可以根据验证集上的结果进行模型调整和选择最优的模型。

5. 模型预测

训练完成的 CNN 模型可以用来对新的数据进行预测。输入新数据,通过前向传播可以得到模型的预测结果。在预测时,需要注意数据预处理和归一化。同时,可以对模型预测结果进行后处理(比如投票机制)以提高模型的预测准确性。

总结

CNN 模型的训练步骤包括数据准备、特征提取、模型训练、模型评估和模型预测。在训练 CNN 模型时,需要注意调整卷积核、池化大小和优化器等超参数,同时进行数据增强和正则化等数据预处理工作。通过训练,CNN 模型可以对图片、语音等数据进行分类、识别和预测,广泛应用于图像识别、语音识别、自然语言处理等领域。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    自动驾驶中常提的卷积神经网络是个啥?

    在自动驾驶领域,经常会听到卷积神经网络技术。卷积神经网络,简称为CNN,是一种专门用来处理网格状数据(比如图像)的深度学习模型。CNN在图像
    的头像 发表于 11-19 18:15 1825次阅读
    自动驾驶中常提的<b class='flag-5'>卷积</b><b class='flag-5'>神经网络</b>是个啥?

    CNN卷积神经网络设计原理及在MCU200T上仿真测试

    CNN算法简介 我们硬件加速器的模型为Lenet-5的变型,网络粗略分共有7层,细分共有13层。包括卷积,最大池化层,激活层,扁平层,全连接层。下面是各层作用介绍: 卷积层:提取
    发表于 10-29 07:49

    NMSIS神经网络库使用介绍

    :   神经网络卷积函数   神经网络激活函数   全连接层函数   神经网络池化函数   Softmax 函数   神经网络支持功能
    发表于 10-29 06:08

    构建CNN网络模型并优化的一般化建议

    整个模型非常巨大。所以要想实现轻量级的CNN神经网络模型,首先应该避免尝试单层神经网络。 2)减少卷积核的大小:CNN
    发表于 10-28 08:02

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    模型。 我们使用MNIST数据集,训练一个卷积神经网络(CNN)模型,用于手写数字识别。一旦模型
    发表于 10-22 07:03

    无刷电机小波神经网络转子位置检测方法的研究

    摘要:论文通过对无刷电机数学模型的推导,得出转角:与三相相电压之间存在映射关系,因此构建了一个以三相相电压为输人,转角为输出的小波神经网络来实现转角预测,并采用改进遗传算法来训练网络
    发表于 06-25 13:06

    基于FPGA搭建神经网络步骤解析

    本文的目的是在一个神经网络已经通过python或者MATLAB训练好的神经网络模型,将训练好的模型
    的头像 发表于 06-03 15:51 887次阅读
    基于FPGA搭建<b class='flag-5'>神经网络</b>的<b class='flag-5'>步骤</b>解析

    使用BP神经网络进行时间序列预测

    使用BP(Backpropagation)神经网络进行时间序列预测是一种常见且有效的方法。以下是一个基于BP神经网络进行时间序列预测的详细步骤和考虑因素: 一、数据准备 收集数据 : 收集用于
    的头像 发表于 02-12 16:44 1265次阅读

    BP神经网络卷积神经网络的比较

    BP神经网络卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈
    的头像 发表于 02-12 15:53 1301次阅读

    如何优化BP神经网络的学习率

    优化BP神经网络的学习率是提高模型训练效率和性能的关键步骤。以下是一些优化BP神经网络学习率的方法: 一、理解学习率的重要性 学习率决定了
    的头像 发表于 02-12 15:51 1418次阅读

    BP神经网络的实现步骤详解

    BP神经网络的实现步骤主要包括以下几个阶段:网络初始化、前向传播、误差计算、反向传播和权重更新。以下是对这些步骤的详细解释: 一、网络初始化
    的头像 发表于 02-12 15:50 1116次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
    的头像 发表于 02-12 15:36 1551次阅读

    如何训练BP神经网络模型

    BP(Back Propagation)神经网络是一种经典的人工神经网络模型,其训练过程主要分为两个阶段:前向传播和反向传播。以下是训练BP
    的头像 发表于 02-12 15:10 1461次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工神经网络
    的头像 发表于 01-09 10:24 2232次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    AI模型部署边缘设备的奇妙之旅:目标检测模型

    通道数时表现更好。 2.3 神经网络的相关知识点 2.3.1 卷积的基本概念 卷积是一种数学运算,在计算机视觉中被广泛应用于特征提取。它通过一个小型矩阵(称为卷积核或滤波器)与输入图像
    发表于 12-19 14:33