0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

构建具有纳伏级灵敏度电压测量系统的正确“姿势”

analog_devices 来源:未知 2023-08-16 18:15 次阅读

构建具有纳伏级灵敏度的电压测量系统会遇到很多设计挑战。目前较好的运算放大器(比如低噪声AD797)可以实现低于1nV/ Hz的噪声性能(1 kHz),但低频率噪声限制了可以实现的噪声性能为大约50 nV p-p(0.1 Hz至10 Hz频段内)。

过采样和平均可以降低宽带噪声的rms贡献,但代价是牺牲了更高的数据速率,且功耗较高,但过采样不会降低噪声频谱密度,同时它对1/f区内的噪声无影响。此外,为避免来自后级的噪声贡献,就需要采用较大的前端增益,从而降低了系统带宽。如果没有隔离,那么所有的接地反弹或干扰都会出现在输出端,并有可能破坏放大器及其输入信号的低内部噪声的局面。表现良好的低噪声仪表放大器可以简化设计,并降低共模电压、电源波动和温度漂移引起的残留误差。

低噪声仪表放大器AD8428提供2000 精确增益,具备解决这些问题所必须的一切特性。AD8428 具有5 ppm/°C最大增益漂移、0.3 μV/°C最大失调电压漂移、140 dB最小CMRR至60 Hz(120 dB最小值至50 kHz)、130 dB最小PSRR和3.5 MHz带宽,适合低电平测量系统。引人注目的是该器件的1.3 nV/ Hz电压噪声(1 kHz)和40 nV p-p噪声(0.1 Hz至10 Hz)性能,在极小信号下具有高信噪比。两个额外的引脚可让设计人员改变增益或增加滤波器来降低噪声带宽。这些滤波器引脚还提供了降低噪声的独特方法。

使用多个AD8428 仪表放大器降低系统噪声

图1 显示的电路配置可进一步降低系统噪声。四个AD8428 的输入和滤波引脚互相短接,降低噪声至原来的二分之一。可以使用任意一个仪表放大器的输出来保持低输出阻抗。此电路可以扩展从而降低噪声,降低的倍数为所用放大器数的平方根。

wKgaomToRlmAHcMwAABGJy5qpOs437.png

图1. 使用四个AD8428 仪表放大器的降噪电路

每一个AD8428 产生1.3 nV/ Hz折合到输入(RTI)的典型频谱噪声,该噪声与其他放大器产生的噪声不相关。不相关的噪声源以方和根(RSS)的方式叠加到滤波器引脚。另一方面,输入信号为正相关。每一个AD8428 都响应信号在滤波器引脚上生成相同的电压,因此连接多个AD8428 不会改变电压,增益保持为2000。

噪声分析

针对图2电路简化版本的分析表明,将两个AD8428以此方式连接可以降低噪声,降低的倍数为2。每一个AD8428的噪声都可以在+IN引脚上建模。为了确定总噪声,可以将输入接地,并使用叠加来组合噪声源。

噪声源en1经200差分增益放大,并到达前置放大器A1的输出端。就这部分的分析而言,输入接地时,前置放大器A2的输出端无噪声。前置放大器A1每个输出端与相应前置放大器A2输出端之间的6 kΩ/6 kΩ电阻分频器可以采用戴维宁等效电路替代:前置放大器A1输出端噪声电压的一半以及一个3 kΩ串联电阻。这部分就是降低噪声的机制。完整的节点分析表明,响应en1的输出电压为1000 × en1。由于对称,因此响应噪声电压en2的输出电压为1000 × en2。en1和en2幅度都等于en,并且将作为RSS叠加,导致总输出噪声为1414 × en

wKgaomToRlmAFbJEAAEuHVNGQS8500.png

图2. 噪声分析简化电路模型

为了将其折合回输入端,就必须验证增益。假设在+INPUT和–INPUT之间施加差分信号VIN。A1第一级输出端的差分电压等于VIN × 200。同样的电压出现在前置放大器A2的输出端,因此没有分频信号进入6 kΩ/6 kΩ分频器,并且节点分析表明输出为VIN × 2000。因此,总电压噪声RTI为en× 1414/2000,等效于en/2。使用AD8428的1.3 nV/Hz典型噪声密度,则两个放大器配置所产生的噪声密度约为0.92 nV/Hz。

使用额外的放大器之后,滤波器引脚处的阻抗发生改变,进一步降低噪声。例如,如图1所示使用四个AD8428,则前置放大器输出端到滤波器引脚之间的6 kΩ电阻后接三个6 kΩ电阻,分别连接每一个无噪声前置放大器的输出端。这样便有效地创建了6 kΩ/2 kΩ电阻分频器,将噪声进行四分频处理。因此,正如预测的那样,四个放大器的总噪声便等于en/2。

行噪声与功耗的权衡取舍

主要的权衡取舍来自功耗与噪声。AD8428具有极高的噪声-功耗效率,输入噪声密度为1.3 nV/Hz(6.8 mA最大电源电流)。为了进行对比,考虑低噪声AD797运算放大器——该器件需要10.5 mA最大电源电流来达到0.9 nV/Hz。一个分立式G = 2000低噪声仪表放大器采用两个AD797运算放大器和一个低功耗差动放大器构建,需要使用21 mA以上电流,实现两个运算放大器和一个30.15 Ω电阻贡献的1.45 nV/Hz噪声RTI性能。

除了很多放大器并联连接使用的电源考虑因素外,设计人员还必须考虑热环境。采用±5 V电源的单个AD8428因内部功耗会使温度上升约8°C。如果很多个器件靠近放置,或者放置在封闭空间,则它们之间会互相传导热量,需考虑使用热管理技术。

SPICE仿真

SPICE电路仿真虽然不能代替原型制作,但作为验证此类电路构想的第一步很有用。若要验证此电路,可以使用ADIsimPE仿真器和AD8428 SPICE宏模型仿真两个器件并联时的电路性能。图3中的仿真结果表明该电路的表现与预期一致:增益为2000,噪声降低30%。

wKgaomToRlmAEMKZAABNmTSStUg187.png

图3. SPICE仿真结果

测量结果

在工作台上测量四个AD8428组成的完整电路。测得的RTI噪声频谱密度为0.7 nV/Hz (1 kHz),0.1 Hz至10 Hz范围内具有25 nV p-p。这比很多纳伏电压表的噪声都要更低。测得的噪声频谱和峰峰值噪声分别如图4和图5所示。

wKgaomToRlmAaZpPAABNPhzpH1Q541.png

图4. 图1中电路的电压噪声频谱测量值

wKgaomToRlqASDS2AAB6v-JnwZM568.png

图5. 图1中电路测得的0.1 Hz至10 Hz RTI噪声

结论

纳伏级灵敏度目标非常难以达成,会遇到很多设计挑战。对于需要低噪声和高增益的系统,AD8428仪表放大器具有实现高性能设计所需的特性。此外,该器件独特的配置允许将这个不寻常的电路加入其纳伏级工具箱内。

wKgaomToRlqAe6YiAACKAR9sZ48116.gif  查看往期内容↓↓↓


原文标题:构建具有纳伏级灵敏度电压测量系统的正确“姿势”

文章出处:【微信公众号:亚德诺半导体】欢迎添加关注!文章转载请注明出处。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 亚德诺
    +关注

    关注

    6

    文章

    4680

    浏览量

    15778

原文标题:构建具有纳伏级灵敏度电压测量系统的正确“姿势”

文章出处:【微信号:analog_devices,微信公众号:analog_devices】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    电流探头的分辨率和灵敏度有关系吗?

    量。这意味着如果一个电流探头具有较高的分辨率,它可以提供更准确且精细的测量结果。对于需要高度精确测量的应用来说,较高的分辨率至关重要。 然后,我们来谈谈灵敏度
    的头像 发表于 03-08 09:40 169次阅读
    电流探头的分辨率和<b class='flag-5'>灵敏度</b>有关系吗?

    构建一个高灵敏度的声控LED灯电路

    只需几个晶体管和电阻器即可构建灵敏度的声激活LED灯电路。
    的头像 发表于 02-25 14:16 505次阅读
    <b class='flag-5'>构建</b>一个高<b class='flag-5'>灵敏度</b>的声控LED灯电路

    PSoC 4200 IEC测试在特定频段干扰下触摸按键灵敏度异常如何解决?

    11MHz之后现象消失。具体表现为,正常的按键灵敏度大幅提高,表现上像接近感应,手指距离按键大概3-4cm处即可触发按键. 请问,是什么原因会导致芯片在这种情况下表现异常?有什么对应的办法可以避免这种问题?
    发表于 02-21 07:05

    adxl203ce在撞击前后的灵敏度与0克输出电压之间的偏差是什么?

    ADXL203CE的规格表明,产品的所有轴能承受3500克撞击。芯片在撞击前后的灵敏度与0克输出电压之间的偏差是什么?我们公司发现芯片的非灵敏轴受到很大影响,芯片的灵敏度没有改变,但0
    发表于 12-28 07:16

    怎么看开关型霍尔元件的灵敏度呢?

    怎么来看开关型霍尔元件的灵敏度呢? 开关型霍尔元件是一种常用的传感器元件,用于检测磁场中的变化。它可以在磁场强度达到一定阈值时切换输出状态,从而实现开关的功能。在实际应用中,了解和评估霍尔元件
    的头像 发表于 12-18 15:02 890次阅读

    计数电子: 超高灵敏度飞安电流测量

    检测限值 ► 测量信号时,测量电平必须高于噪声 ► 低电平测量要求我们更靠近阴影区域 ► 需要采取特殊措施才能获得精确结果 ► 静电计用于低电流测量 详文请阅:计数电子: 超高
    发表于 11-27 08:31 0次下载
    计数电子: 超高<b class='flag-5'>灵敏度</b>飞安电流<b class='flag-5'>测量</b>

    高效稳定管理电源的正确姿势”!

    高效稳定管理电源的正确姿势”!
    的头像 发表于 11-23 09:04 212次阅读
    高效稳定管理电源的<b class='flag-5'>正确</b>“<b class='flag-5'>姿势</b>”!

    三轴或六轴加速度传感器哪种灵敏度高一些?

    DIY平衡控制系统,需要使用加速度传感器,三轴或六轴的均可以,哪种灵敏度高一些?
    发表于 11-10 06:46

    什么是接收灵敏度?如何优化NF提高接收灵敏度

    接收灵敏度是指接收机能够处理的最小输入信号强度,通常以信噪比来衡量。
    的头像 发表于 11-05 09:55 2179次阅读
    什么是接收<b class='flag-5'>灵敏度</b>?如何优化NF提高接收<b class='flag-5'>灵敏度</b>?

    柔性传感器的灵敏度多少算高?传感器灵敏度大小与灵敏系数的关系

    越高。那么,柔性传感器的灵敏度多少算高呢?本文将从多个方面解析传感器灵敏度的概念和确定灵敏度的方法,并简述灵敏度大小与灵敏系数的关系。 1.
    的头像 发表于 10-24 11:49 1079次阅读

    业内最高灵敏度--MW601

    MW601: ⚫ 外形一致,替换简单 ⚫ 业内最高灵敏度,更多的设计可能性 ⚫ 宽广的工作温度,更极致的使用环境 ⚫ 由InSb材料制成的霍尔元件,灵敏度是Si基的50~100倍 广 泛用于
    发表于 10-11 17:08

    为什么万用表的电压灵敏度越高(内阻大),测量电压的误差就越小?

    为什么万用表的电压灵敏度越高(内阻大),测量电压的误差就越小?  万用表是测量电路中电压、电流和
    的头像 发表于 09-26 16:55 2359次阅读

    什么是传感器的灵敏度,传感器常用术语又有哪些?

    ,它将随输入量的变化而变化。   灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位僚创文档输出电压变化为200mV,则其灵敏度应表示为200mV/mam.   当传感器的输出、输入量的量纲
    发表于 09-15 11:19

    具有 Z 轴灵敏度的 TMR 传感器

    和精确度。 CT130是世界上第一款具有Z轴灵敏度的真正TMR传感器,提供与霍尔解决方案相同的灵敏度轴。CT130是一款与霍尔兼容的TMR传感器,具有TMR的所有优点,例如更高的信噪比
    的头像 发表于 06-09 11:30 876次阅读
    <b class='flag-5'>具有</b> Z 轴<b class='flag-5'>灵敏度</b>的 TMR 传感器

    扩频系统的接收机灵敏度方程

    本应用笔记论述了扩频系统灵敏度的定义以及计算数字通信接收机灵敏度的方法。本文提供了接收机灵敏度方程的逐步推导过程,还包括具体数字的实例,以便验证其数学定义。
    的头像 发表于 06-08 16:55 678次阅读
    扩频<b class='flag-5'>系统</b>的接收机<b class='flag-5'>灵敏度</b>方程