0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

OFDM-MSK-LFM雷达通信一体化信号性能分析

FPGA算法工程师 来源:EW Frontier 2023-07-24 17:02 次阅读

一、前言

现代电子战对频谱资源利用越来越多,致使系统复杂性越来越高、电磁干扰愈来愈严重,因此部分学者提出了雷达通信一体化系统,旨在高效的使用频谱资源,降低设备复杂度。雷达通信一体化信号的优化设计是其重点研究方向,本文主要研究典型一体化信号OFDM-MSK-LFM。雷达通信一体化技术是雷达信号与通信信号复合而成的,设计的基本要求是要考虑雷达与通信性能的均衡,因此无论是雷达信号还是通信信号,均需要合理的选择,本文考虑频谱利用率选择OFDM信号,考虑雷达传输的恒包络要求,选择MSK调制技术与LFM雷达信号。

二、OFDM-MSK-LFM一体化信号模型

2.1 MSK调制原理

由于在前述两篇文章OFDM-16QAM-LFM与OFDM-BPSK-LFM中已经介绍了OFDM-LFM系列一体化信号模型,在此我们就不过多赘述,需要了解的同学可以查看对应的文章,也可以参考文末参考文献。

MSK信号具有恒定的信息包络且每两个码元之间相位不会跳变,占用带宽也较小,将其与OFDM-LFM信号相结合可得到一体化信号。

MSK 信号的第k 个码元可以表示为

172866cc-2a00-11ee-a368-dac502259ad0.png

式中:ak为第k个输入码元,取值为±1; φk为第个码元的相位常数,在时间kTs<t≤(k+1)Ts内保持不变,其作用是在t=kTs处保持相位连续。

17312514-2a00-11ee-a368-dac502259ad0.png

1739db3c-2a00-11ee-a368-dac502259ad0.png

1743965e-2a00-11ee-a368-dac502259ad0.png

MSK调制原理如下图所示,基带码元先差分编码,然后经过串并转换分成I、Q两路,再与对应的载波相乘,然后再相加完成MSK的调制。174c6540-2a00-11ee-a368-dac502259ad0.png

图1 MSK调制信号生成过程

2.2OFDM-MSK-LFM一体化信号

结合OFDM-LFM 技术得到一体化波形公式推导为

1755df30-2a00-11ee-a368-dac502259ad0.png

三、仿真分析

参数设置:OFDM:采样率100Mhz,载波数2;LFM:带宽40Mhz,脉宽12us,载频10Mhz;MSK:载频4Khz。

3.1 MSK调制

根据图2和图3不难看出,MSK信号具有良好的恒包络性,这一特性能够使其在雷达探测过程中保持良好感知能力,同时不会影响模糊函数,与此同时MSK加入了调制数据,进一步实现通信与感知的并存。观察图3,可以发现MSK信号的频谱主要集中与两个频率,具有较高的频带利用率,这也满足雷达通信一体化的基本要求。基于上述条件,可以发现MSK调制是一种适合用于雷达通信一体化技术的调制方式。

175ee454-2a00-11ee-a368-dac502259ad0.jpg图2 MSK信号时域波形

1773eb60-2a00-11ee-a368-dac502259ad0.jpg

图3 MSK信号频谱

3.2 OFDM-MSK-LFM模糊函数

图4-图6分别是OFDMMSK-LFM的模糊函数三维视图、速度切片与距离切片,看过之前OFDM-16QAM-LFM与OFDM-BPSK-LFM两篇文章的同学应该能够发现MSK调制令一体化信号的模糊函数更趋于图钉形状,具有较低的旁瓣,因此其雷达探测能力得到很好的保证,而OFDM-MSK-LFM信号的通信误码率取决于MSK调制,在文末参考文献中有相应的介绍,其通信可靠性较高。

17868dd8-2a00-11ee-a368-dac502259ad0.jpg

图4 OFDM-MSK-LFM模糊函数三维图

1795f4a8-2a00-11ee-a368-dac502259ad0.jpg图5 OFDM-MSK-LFM零多普勒

17a601f4-2a00-11ee-a368-dac502259ad0.jpg

图5 OFDM-MSK-LFM零时延

四、总结

雷达通信一体化技术需要良好的通信信号、雷达信号以及调制方式,这三者共同决定了一体化信号的雷达探测性能与通信性能,因此本文将OFDM、LFM与MSK三种技术相结合,主要利用了OFDM的频谱利用率、信息传输速率,LFM的良好探测性能,MSK携带调制信息能够保证恒包络性,不影响雷达探测。

其实雷达通信一体化信号设计最简单的就是这类组合优化设计,希望本文对相关研究的同学能有帮助。 参考文献

[1]肖博,霍凯,刘永祥.雷达通信一体化研究现状与发展趋势[J].电子与信息学报, 2019, 41(3): 739–750.

[2]赵忠凯,石妙.基于OFDM-LFM的雷达通信一体化波形设计[J].应用科技,2021,48(3):73-77.

OFDM-MSK-LFM一体化信号代码详见:https://mbd.pub/o/myCreated
学术交流Q群:479772742
MSK调制代码:
clear all;                  % 清除所有变量
close all;                  % 关闭所有窗口
clc;                        % 清屏
%% 基本参数
M=11;                       % 产生码元数    
L=100;                      % 每码元复制L次,每个码元采样次数
Ts=0.001;                   % 每个码元的宽度,即码元的持续时间
Rb=1/Ts;                    % 码元速率1K
dt=Ts/L;                    % 采样间隔
TotalT=M*Ts;                % 绝对码总时间
t=0TotalT-dt;           % 时间1
TotalT2=(M+1)*Ts;           % 相对码总时间
t2=0TotalT2-dt;         % 时间2
Fs=1/dt;                    % 采样间隔的倒数即采样频率


%% 产生单极性波形
wave=randi([0,1],1,M);      % 产生二进制随机码,M为码元个数


%% 绝对码变相对码
wave2=ones(1,M+1);          % 产生1*(M+1)的全1行向量
%% 相对码第一个参考值为1,相对码b(n+1)=绝对码a(n)和相对码b(n)做异或
for  k = 2:M+1
    wave2(k) = xor(wave(k-1),wave2(k-1));%生成相对码
end
fz=ones(1,L);               % 定义复制的次数L,L为每码元的采样点数
x1=wave(fz,:);              % 将原来wave的第一行复制L次,称为L*M的矩阵
juedui=reshape(x1,1,L*M);   % 将刚得到的L*M矩阵,按列重新排列形成1*(L*M)的矩阵
x2=wave2(fz,:);             % 将原来wave2的第一行复制L次,称为L*(M+1)的矩阵
jidai=reshape(x2,1,L*(M+1));% 将刚得到的L*(M+1)矩阵,按列重新排列形成1*(L*(M+1))的矩阵


%% 单极性变为双极性
% 基带信号变为双极性即jidai为1的时候,jidai为1;jidai为0的时候,jidai为-1
for n=1:length(jidai)
    if jidai(n)==1
        jidai(n)=1;
    else
        jidai(n)=-1;
    end
end


%% 产生I、Q两路码元
I_lu=wave2(1end);        % 相对码的奇数位置为I路码元
Q_lu=wave2(2end);        % 相对码的偶数位置为Q路码元


%% I、Q两路单极性码元变为双极性码元
I_lu=2*I_lu-1;
Q_lu=2*Q_lu-1;


%%I、Q两路码元的单个码元的持续时间是原始码元中单个码元的两倍,Tb=2Ts,并且I路码元延时Ts
fz2=ones(1,2*L);            % 定义复制的次数2L
x3=I_lu(fz2,:);             % 将原来I_lu的第一行复制2L次,称为2L*((M+1)/2)的矩阵
I=reshape(x3,1,(2*L)*((M+1)/2));% 将刚得到的2L*((M+1)/2)矩阵,按列重新排列形成1*(2L*((M+1)/2))的矩阵
x4=Q_lu(fz2,:);             % 将原来Q_lu的第一行复制2L次,称为2L*((M+1)/2)的矩阵
Q=reshape(x4,1,(2*L)*((M+1)/2));% 将刚得到的2L*((M+1)/2)矩阵,按列重新排列形成1*(2L*((M+1)/2))的矩阵
I_yanshi=zeros(1,length(I));% 产生1*length(I)的零向量
% I路延时Ts,即I路1至L置零,原来1至(2*L)*((M+1)/2)-L的数移动到L+1至最后
I_yanshi(L+1:end)=I(1:(2*L)*((M+1)/2)-L);


%% 绘制码元波形
figure(1);                  % 绘制第1幅图
subplot(411);               % 窗口分割成4*1的,当前是第1个子图 
plot(t,juedui,'LineWidth',2);% 绘制绝对码元波形,线宽为2
title('绝对码信号波形');    % 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
axis([0,TotalT,-1.1,1.1])   % 坐标范围限制


subplot(412);               % 窗口分割成4*1的,当前是第2个子图 
plot(t2,jidai,'LineWidth',2);% 绘制相对码元波形,线宽为2
title('相对码信号波形');    % 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
axis([0,TotalT2,-1.1,1.1])  % 坐标范围限制


subplot(413);               % 窗口分割成4*1的,当前是第3个子图 
plot(t2,I,'LineWidth',2);   % 绘制I路码元波形,线宽为2
title('I路信号波形');       % 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
axis([0,TotalT2,-1.1,1.1])  % 坐标范围限制


subplot(414);               % 窗口分割成4*1的,当前是第4个子图 
plot(t2,Q,'LineWidth',2);   % 绘制Q路码元波形,线宽为2
title('Q路信号波形');       % 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
axis([0,TotalT2,-1.1,1.1])  % 坐标范围限制
%% MSK调制
fc1=4000;                   % 载波1频率4kHz   
fc2=1/(4*Ts);               % 载波2频率1/(4*Ts)  
zb1=cos(2*pi*fc1*t2);       % 同相载波1
zb2=-sin(2*pi*fc1*t2);      % 正交载波1
zb3=cos(2*pi*fc2*t2);       % 同相载波2
zb4=sin(2*pi*fc2*t2);       % 正交载波2
I_wave=I_yanshi.*zb1;             
I_wave=I_wave.*zb3;         % I路波形
Q_wave=Q.*zb2;       
Q_wave=Q_wave.*zb4;         % Q路波形
msk=I_wave+Q_wave;          % MSK的调制 
figure(2);                  % 绘制第2幅图
subplot(411)                % 窗口分割成4*1的,当前是第1个子图 
plot(t2,I_wave,'LineWidth',2);% 绘制I路信号的波形 
title('I路信号波形')        % 标题
axis([0,TotalT2,-1.1,1.1]); % 坐标范围限制
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签


subplot(412)                % 窗口分割成4*1的,当前是第2个子图 
plot(t2,Q_wave,'LineWidth',2);% 绘制Q路信号的波形 
title('Q路信号波形')        % 标题
axis([0,TotalT2,-1.1,1.1]); % 坐标范围限制
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签


subplot(413)                % 窗口分割成4*1的,当前是第3个子图 
plot(t2,msk,'LineWidth',2); % 绘制MSK的波形 
title('MSK信号波形')        % 标题
axis([0,TotalT2,-1.1,1.1]); % 坐标范围限制
xlabel('时间/s');           % x轴标签
ylabel('幅度');%y轴标签

审核编辑:汤梓红
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • ofdm
    +关注

    关注

    6

    文章

    346

    浏览量

    56794
  • 通信
    +关注

    关注

    18

    文章

    5706

    浏览量

    134396
  • 信号
    +关注

    关注

    11

    文章

    2639

    浏览量

    75388
  • 雷达
    +关注

    关注

    48

    文章

    2676

    浏览量

    115536
  • MSK
    MSK
    +关注

    关注

    0

    文章

    14

    浏览量

    15274
收藏 人收藏

    评论

    相关推荐

    石油石化室内外一体化定位解决方案

    一体化
    中海达
    发布于 :2023年06月21日 11:44:11

    谈谈机电一体化技术的现状及发展趋势

      、机电一体化的产生与应用  20世纪60年代以来,人们利用电子技术的初步成果来完善机械产品的性能后,刺激了机械产品与电子技术的结合。计算机技术、控制技术、通信技术的发展,为机电
    发表于 10-16 11:16

    浅析机电一体化的发展趋势

      近些年来,光机电一体化技术得到迅猛发展,在民用工业和军事领域得到广泛地应用。因此,光机电一体化技术成为当今机械工业技术发展的个主要趋势。  、光机电
    发表于 10-21 11:00

    【云智易申请】一体化机柜监控设计

    申请理由:申请开发板设计机柜监控系统,曾今设计过智能电表,无线多路抢答器,多旋翼飞行器等,参加过电子设计国赛省赛,光电设计大赛,等。项目描述:如今设备都朝一体化,智能的方向发展,机柜也朝一体化
    发表于 07-23 12:15

    HZD-B一体化振动变送器

    连接DCS、PLC或其它系统,是风机、水泵等工厂设备振动测量的理想选择。HZD-B一体化振动变送器技术参数:◆外接电源:24VDC±5%◆输入:信号:取自内置振动速度传感器的信号灵敏度:20.0mV/mm
    发表于 05-23 13:57

    什么是机电一体化

    机电一体化http://www.gooxian.com/article/show-1823.htm就是“利用电子、信息(包括传感器、控制、计算机等)技术使机械柔性和智能”的技术1) 术语的来源
    发表于 08-29 09:06

    机电一体化系统

    一体化系统—机器人机器人是典型的机电一体化产品。下面以图1.2所示的机器人为例来分析机器人的系统构成。1) 机械装置 机器人的手指、手臂、手臂的连接部分和机座等是机器人能够运动的机械结构。2) 执行
    发表于 08-29 09:11

    关于车载雷达通信系统的详细介绍

    功能,但是由于子阵的功率受限,雷达通信系统的性能都会受到影响。因此,这种硬件共享、独立实现雷达通信功能的
    发表于 06-19 06:52

    如何实现机电一体化设计?

    用户总是要求我们提高所设计的机械的性能,同时减少资金成本。为了达到这两个矛盾的目标,我们将注意力放到在机械设计方面有巨大潜力的机电一体化上。本文着重展示了使用嵌入式分析工具的现代计算机辅助设计(CAD)系统,告诉大家,如何才能实
    发表于 08-07 06:48

    一体化伺服电机如何保存当前参数

    本文仅适用于立迈胜PMM系列一体化伺服电机出现的常见问题。如您的伺服电机是其他型号的请谨慎操作。解决方法如下:一体化伺服电机如何保存当前参数?在H1010-01写0x65766173
    发表于 06-28 07:18

    机电一体化综合实训考核

    ZN-01MES机电一体化综合实训考核装置、概述ZN-01MES机电一体化综合实训考核装置 是种为典型的机电一体化、自动
    发表于 07-02 07:36

    Proteus是如何一体化安装的

    九层妖塔 起于垒土 Proteus一体化安装STC15库添加Step1:Proteus的安装Step2:STC15库的导入Step3:新建工程Step4:器件放置Proteus一体化安装,无需破解
    发表于 07-28 06:12

    如何操作CAN通信一体化步进电机的调试软件?

    如何操作CAN通信一体化步进电机的调试软件?
    发表于 10-28 07:55

    测控一体化闸门系统

    测控一体化闸门系统关键字:测控一体化闸门系统 智能一体化闸门 灌区水闸自动控制云传物联测控一体化闸门系统集闸门远程/自动控制、渠道水位流量
    发表于 08-25 14:34

    OFDM-MSK-LFM雷达通信一体化信号性能分析

    现代电子战对频谱资源利用越来越多,致使系统复杂性越来越高、电磁干扰愈来愈严重,因此部分学者提出了雷达通信一体化系统,旨在高效的使用频谱资源,降低设备复杂度。
    的头像 发表于 07-24 17:03 695次阅读
    <b class='flag-5'>OFDM-MSK-LFM</b><b class='flag-5'>雷达</b><b class='flag-5'>通信</b><b class='flag-5'>一体化</b><b class='flag-5'>信号</b><b class='flag-5'>性能</b><b class='flag-5'>分析</b>