0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

大功率芯片散热电动汽车电机控制器结构优化

向欣电子 2022-12-06 10:09 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

摘要:在当下的实际应用中,特别是电动汽车领域,由于该领域的快速发展导致功率半导体器件需要更高的性能要求。自功率半导体诞生以来,技术人员主要致力于提高元件的耐压耐温、开关频率、通流能力等性能,然而硅元件性能受限于基地材质,该材质存在明显的上限,目前的硅功率半导体的性能基本接近上限,难以满足当前及未来电动汽车电机控制器对效率,功率密度,体积,可靠性等方面的需求。这些问题的存在使得行业积极转向采用前沿技术:采用性能更加优异的碳化硅(SiC)功率半导体器件代替传统的硅(Si)功率半导体器件进行电机控制器设计。关键词:SiC电动汽车电机控制器结构优化

1行业发展现状

国内电动汽车产业始于 21 世纪初期,在2006 年开始尝试实现混合动力汽车产业规模化,并开始逐步拓展至纯电动汽车的生产范围 [1]。当时的专家团队就电动汽车的车用动力蓄电池、驱动电机、燃料电池、电力电子设备等关键零部件的总体集成和技术研发进行了大规模的攻关,促进产学研结合,从而奠定了现今中国在电动汽车领域发展的基础。随着产业不断竞争和整合,电动汽车因其发展迅猛,效果显著,性能优异,技术可靠等优点,迅速成为了国内最主流的一种电动汽车产品。电动汽车顾名思义—指利用电能驱动车辆运行,首先通过高性能电池储存并输出电能,然后由电机驱动装置将能量精确控制并分配至驱动电机 - 轮毂系统从而实现车辆运行的方式。由于这个方向与传统汽车行业相比差别较大,国外的领先程度也不高,同时由于行业蓝海阻力小,没有存在明显的行业专利壁垒和垄断,国内技术创新发展迅速,使得我国后发优势得到了充分的体现。2013 年实现了高功率硅 IGBT 器件国产化,2016 年达到世界先进水平,我国电动汽车得以能够同欧美企业同台竞技。

2电动汽车电机驱动系统的研究

2.1电力驱动装置应用需求

随着技术的不断发展在电力驱动系统中的电动机已经从传统的直流电机、交流异步电机发展到了同步磁阻电机、永磁电机等效率高、体积小、功率密度大的新型电机产品。相比于传统驱动电机,新型电机具备体积小,功率大,成本低,控制精度高的优势。传统电机控制系统简单响应性能虽然不错,但由于体积、成本、效率等因素导致了其无法同新型电动机在电动汽车这个行业上竞争,而新型电机是因为采用了先进的电机驱动装置才能发挥出新型电机的性能。

电动汽车要走进千家万户,首先得能够保证行业能自行发展,稳定盈利,那么必然会面临着一个国家政策补贴减少和完全取消这样一个严峻的考验。当国家的政策扶持逐步取消以后,什么样的产品才能卖出合适的价格?才能让市场接受?才能走进千家万户?首先是价格,要能够让普通消费者买得起,然后是与同竞争对手燃油汽车相比要跑得里程要长续航能力强,再者安全系数一定要高,最后是智能化水平要领先。而电机驱动装置,作为电动汽车三大核心技术之一,其性能的好坏直接决定了车辆的总体指标。因此对电机驱动装置的要求就是成本低,效率高,体积要小,环境适应性强,容忍性强。那么就需要具备高功率密度、能耐受高温、不惧低温、电气控制性能好、抗电磁干扰能力强或者容易控制、过载运行能力强、过负荷倍数要突出、控制容易且精确稳定和综合系统性能强等特点。只有这样才能在产品端表现出优势,才能具有较强的行业竞争力。

c8cbf59e-7482-11ed-b116-dac502259ad0.gif

2.2传统电机驱动控制器研究

随着电力电子技术水平迅速发展得到进一步的提升以及各种先进高性能微处理器,其控制和功能日趋丰富而强大,电机驱动的自动控制系统设备已实现完全数字化控制,产业也迅速朝着集成化、模块化的方向发展。

电力驱动装置这种集成系统由多个模块组合而成,传统的电力驱动装置采用硅 IGBT作为电流的控制元件,普通硅器件结温目前已达到 150℃,接近硅材质的上限,并且元件在工作温度大于 80℃后就会出现显著的性能降低、芯片载流能力下降、开关波形不稳定、毛刺增加等问题,这要求提供更大的驱动电流,同时增加了对控制电路的压力。为满足车辆控制的可靠性要求,往往需要散热系统和驱动控制系统,形成较大的系统冗余,且硅 IGBT 本身也存在一定程度的模块冗余。这导致集成系统体积硕大、成本高昂且性能一般,主要用于对设备体积不敏感的场所例如高铁、电动公交等。

从占用体积角度分析,为保证散热,集成系统采用循环水冷系统直接接触芯片的方式带走热量,但因为水冷液正常工作温度在50-90 摄氏度范围,硅 IGBT 元件的可靠工作温度与冷却介质温差较小,需要极高的传

热能力才能保证热量的快速转移。但为了保证系统安全可靠,在高频振动下稳定、不老化,电子元器件必须与冷却介质完全隔离,不能采用常规民用产品,直接接触冷却和液体表面冲击冷却。因此,中间层的传热介质只能是铜制热管或纯铜均热板,其成本相对高昂而且需要较大的接触表面积来保证热量的快速转移,这导致水冷系统水道复杂、成本高、体积大近乎占据整个模块约 40%。为保证开关波形的稳定,必须保证在最恶劣工况下 IGBT 驱动元件电磁干扰要尽量小,不会因为大电流导致纹波异常,引起错误的开关动作。通常采用三相桥式逆变电路的 IGBT系统,为保证最终输出波形能接近正弦波需要采用 PWM 高频开关,配合续流元件和平波电容从而实现波形整理。而传统硅 IGBT模块因工作温度导致的性能劣化且由杂波引起的稳定时间延迟导致系统开关频率较低,仅有 30kHz 左右,这导致在输出正弦波驱动电流时 PWM 波形频率太低需要很大的平波电容才能实现设计目标。这些电容组统称为母排电容,集成后也占用了较大体积,且因为电容数量众多,导致工作电压也较高而能采用的 PP 膜电容仅具有较好的低频性能。杂波的尖锐波形形成的高次谐波会导致母排电容组的损耗增加,发热量很大。传统的集成系统工程设计是采用定制电容器,封装外壳直接与散热模组连接,通过循环水冷系统带走热量。因此母排电容及其附属配件占用了整个模块约 45%,成本是难以降低。

去除以上两部分组件,真正用于电机驱动的核心部件 IGBT 模组和控制电路的体积只占整个模块的 15%,虽然这部分占成本比例高,但由于国产化元器件进度很大,更新换代速度较快。因此成本下降速度很快,属于创新竞争的关键环节。可以根据市场定位选择合适价格的元器件。而其余的散热系统和母排电容系统的成本和占用体积几乎无法减少。这严重影响产品的竞争力。

2.3SiCMOSFET 驱动元件替代硅 IGBT元件设计

硅 IGBT 与 SiCMOSFET 驱动芯片两者电气参数特性差别较大,对驱动的要求也不同,主要体现在以下几个方面,见表 1。

表1c962282a-7482-11ed-b116-dac502259ad0.png

从开通、关断控制电压来看,相比于传统硅 IGBT,采用 SiC 器件需要更高的开通电压,但关断电压可采用 0V,这极大简化了控制电路的设计,不需要额外的负压电路。对比电磁干扰的耐受性能 CMTI,碳化硅MOSRET 也显著强于传统硅 IGBT,能实现更高的可靠性同时简化驱动电路设计。

从开关时间来看,开关时间的成倍缩短能大大减少系统在导通与关断之间切换过程的时间,过程时间越短,则过程状态下的开关损耗就越小,显著降低的开关损耗极大降低高频运行下的发热。同时导通电阻的降低也能减少通流损耗,低频、大电流下的发热也能显著减少。综合各种运行工况来看,作为电流控制的关键环节,任意一种损耗的减小均能大幅提高系统运行效率。

从开关频率方面来看,通常硅 IGBT 的应用开关频率不大于 40kHz,而 SiC 而开关频率通常在 100-200kHz,相对来说得到大幅提升,在用于 PWM 驱动产生正弦波输出的过程中能够有效优化波形,能降低对母排电容的容量要求,大幅降低输出毛刺和抖动,可以减少母排电容的发热损耗。

从 SiC 材料本身的材料性能方面来看,其器件结构具有天生的耐高温能力,本身热导率性能优越,是硅材料的三倍,在真空条件下甚至可耐受高达 400-600℃的高温,在实际工业应用中,为了防止接触空气氧化、保证系统可靠性稳定性,SiC 器件必须有车规级封装,当前耐高温封装中,150℃结温是业界目前的最高执行标准,而 200℃乃至更高耐温的封装还在定制化设计之中,潜力深厚具有非常广阔的发展前景。

从 SiC 材料本身的物理性能方面来看,SiC 半导体器件具有很宽的禁带宽度,属于第三代半导体材料,临界击穿电场强度是硅材料的近十倍,这使得更高元器件工作电压成为了可能。目前的产品中传统硅 IGBT 产

品工作电压约 450V-800V,而已投产的车用SiC 器件工作电压可达 1200V-3300V 且仍具备较大提高的空间。这样可使得同等功率下高电压小电流驱动成为了可能,电流的减小能显著降低杂散电感和电磁干扰的影响,且能大幅降低线路损耗与发热。

为更好的发挥 SiC 器件的特点和优势,

需要对现有电机控制器进行大量优化和改进。首先控制主系统必须具备更小的延迟、更高的开关频率和更短的保护动作时间。这需要采用更先进更高频率的 SOC 片上系统,才能发挥 SiC 器件高开关频率、低损耗的优势。其次 SiC 器件损耗低、发热量小且耐温高,这些优越的性能组合起来使得 SiC 热传导速度极大提高、热密度提高、冷却系统大幅减小。采用单独的耐高温开关板设计,将所有 SiC器件集成到一起,采用光触发技术同控制板完全隔离,工作温度为 150-200℃。这既保证常规控制板工作温度稳定,又能发挥出 SiC器件板耐高温的优势,同时有效降低电磁干扰水平,提高系统可靠性。最后应当采用新型主控算法充分发挥在控制器中移相,适当抵消电机载波的纹波,同时将工作电压提高一到两倍,更好的发挥 SiC 器件高电压的优势,在维持原波形杂波和谐波占比的条件下,极大地减少平波母排电容的大小和损耗甚至可以在优化控制器的情况下完全消除。通过以上几种方式可使得电机驱动装置的功率密度从 8kW/L 提高至 30kW/L 且仍具备很大的发展潜力。

3结语

综上所述,当前新型车用 SiC 材料控制器在极端环境下的可靠性还在进一步的验证。SiCMOSFET 与硅 IGBT 材料相比,具有更宽的禁带宽度、数倍的临界击穿场强、两倍的电子饱和漂移速率和三倍的热导率这样的性能优势,在电气上具有更高频、高效、耐高压、耐高温等特点取代传统器件势不可挡。以当前已经投入使用的 SiC 电机控制模块同传统硅 IGBT 模块系统相比,电机驱动装置整体系统的体积可减少至 25%,系统重量减少至 30%,电能损耗从 20% 降低至 5%,效率达到 99% 以上,尽管电力元件价格更昂贵,但电机驱动装置系统的成本还是显著降低至 65%。从市场上看,SiC 电机控制模块的使用使得整车续航里程提升 5% 以上,配合更好的能量回收制动,数字控制技术极大提高车辆综合续航水平且远未达到理论性能极限,具有很大的发展前景

来源:新能源汽车

作者:陈志飞

厦门市福工动力技术有限公司

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

以上部分资料转载网络平台"热管理技术“,文章仅用于交流学习版权归原作者。如侵权请告知立删。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 控制器
    +关注

    关注

    114

    文章

    17638

    浏览量

    190233
  • 电机
    +关注

    关注

    143

    文章

    9485

    浏览量

    153166
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    浮思特 | 解读莱姆HC16F系列汽车电机控制电流传感的创新技术

    LEMHC16F系列汽车电机控制电流传感,看看它如何以紧凑设计与卓越性能,适配大功率汽车的严苛需求。HC16F系列传感
    的头像 发表于 11-20 09:48 1313次阅读
    浮思特 | 解读莱姆HC16F系列<b class='flag-5'>汽车电机</b><b class='flag-5'>控制</b>电流传感<b class='flag-5'>器</b>的创新技术

    ‌STMicroelectronics HVLED101大功率因数反激式控制器技术解析

    STMicroelectronics HVLED101大功率因数反激式控制器是具有增强型峰值电流模式的控制器。STMicroelectronics HVLED101主要控制输出
    的头像 发表于 10-28 09:34 317次阅读
    ‌STMicroelectronics HVLED101<b class='flag-5'>大功率</b>因数反激式<b class='flag-5'>控制器</b>技术解析

    大功率无线充电电路原理图

    大功率无线充电技术结合磁耦合与电路设计,实现高效安全的能量传输,适用于电动汽车和移动设备,通过多级优化提升传输效率和稳定性。
    的头像 发表于 09-24 08:12 531次阅读
    <b class='flag-5'>大功率</b>无线充电电路原理图

    电动汽车TEC,需要怎样的控制器

    电子发烧友网综合报道 在电动汽车上,热管理是保障车辆性能和安全的关键一环。包括电池、电机、逆变器、ADAS传感、ADAS域控制器等,都需要相应的冷却辅助,帮助
    发表于 08-24 01:20 3898次阅读

    浅谈电动汽车电机控制与角度传感技术

    随着环保意识的日益提升以及对建立可持续发展社会的关注,汽车市场正不断朝着“电动汽车转型”的方向发展,即从传统汽油车向电动车过渡。为实现更高性能的电动汽车 (xEV) 和
    的头像 发表于 07-17 16:27 3839次阅读

    采用NXP解决方案打造汽车电机控制原型

    ,因而热损失也更少。BLDC电机具有效率高、功率重量比大、维护成本低、转速高、扭矩大、运行安静的特点,非常适合无人机、风扇、泵和电动汽车(EV)等应用。 然而,BLDC电机需要有电子
    发表于 07-14 13:45 2799次阅读
    采用NXP解决方案打造<b class='flag-5'>汽车电机</b><b class='flag-5'>控制</b>原型

    芯森电流传感电动汽车与充电系统的应用案例

    电动汽车与充电系统中,电流检测需求覆盖电动汽车的动力驱动、充电管理以及能量转换等多个环节。精确的电流检测能够助力实现高能效转换,优化动力控制策略,同时为
    的头像 发表于 07-07 16:09 988次阅读
    芯森电流传感<b class='flag-5'>器</b>在<b class='flag-5'>电动汽车</b>与充电系统的应用案例

    无刷直流电机电动汽车再生ABS双闭环控制研究

    [摘要]为使无刷直流电机电动汽车在冰雪等低附着路面上进行纯再生制动时,驱动轮仍具有防抱死功能采用了双闭环控制策略。文中首先阐述了双管调制下的无刷直流电机再生制动机理;提出了通过控制PW
    发表于 06-26 13:43

    轮毂电机驱动电动汽车垂向动力学控制研究综述

    电动汽车的悬架控制策略进行归纳和总结,最后对轮毂电机驱动电动汽车未 来的发展进行展望。下载附件参阅本期全文!!!*附件:轮毂电机驱动
    发表于 03-07 15:21

    前100名可免积分领取硕士研究生,中职讲师基于PLC的电动汽车电机驱动系统故障检测探究

    为实现对电动汽车电机驱动系统故障有效检测,设计基于PLC故障检测系统。该系统主要包括传感选择、控制逻辑设计、报警机制和故障诊断四个部分。 前100名可免积分下载资料哦~~~
    发表于 03-07 13:51

    电机电动汽车驱动防滑控制

    控制理论根据滑转率偏差调整电机输出转矩,实现对车轮滑转率实时追踪,使车辆发挥出最大动力。使用 Simulink 设计了双电机四驱电动汽车的驱动防滑
    发表于 03-05 18:43

    大功率PCB设计思路与技巧

    大功率PCB设计的核心在于确保电路在高电流或高电压条件下的可靠性和稳定性。设计总体思维应聚焦于热管理、电气性能和机械结构优化。 1.热管理:评估所有元件的热特性,预测热点,设计有效的散热
    的头像 发表于 01-27 17:48 1556次阅读
    <b class='flag-5'>大功率</b>PCB设计思路与技巧

    电机控制器应用领域

    。 2. 电动汽车 电动汽车(EV)是电机控制器的一个重要应用领域。电机控制器负责
    的头像 发表于 01-22 09:24 1853次阅读

    Tips:大功率电源PCB绘制注意事项

    在现代电子设备中,大功率电源可以为服务电动汽车充电器以及各类工业设备提供稳定、可靠的电力供应,确保设备能够正常运行。而PCB负责电子元件间的信号和电源传输,在大功率电源中承担着至关
    发表于 12-11 18:58

    浮思特|如何通过设计SiC功率模块优化电动汽车电机驱动热管理效率?

    所应用,但要想大规模使用,必须改进其散热性能。在SiC电机驱动系统中,各种具有改进热散性能的器件设计正在涌现。电动汽车热设计中的SiC热散系统在功率电子设备中占据了很
    的头像 发表于 12-09 11:54 1091次阅读
    浮思特|如何通过设计SiC<b class='flag-5'>功率</b>模块<b class='flag-5'>优化</b><b class='flag-5'>电动汽车电机</b>驱动热管理效率?