0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于MM32L0130的LPUART应用(2)

冬至子 来源:灵动MM32MCU 作者:灵动MM32 2023-06-02 17:30 次阅读

LPUART(Low power universal asynchronous receiver transmitter,低功耗通用异步收发器),相比标准的UART,其功耗极低,支持在低功耗模式下运行,并且可以将MCU从低功耗模式唤醒。

上期介绍了MM32全新低功耗系列MM32L0130的LPUART外设,并实现了基本UART收发通信和使用LPUART唤醒MCU。本期介绍LPUART的高级应用,实现DMA收发实验、使用数据匹配寄存器匹配到指定字符后唤醒MCU。

1 LPUART使用DMA

LPUART可以使用DMA来搬运数据,实现无需CPU参与的快速自动数据传输。硬件发出DMA请求与对应的DMA通道直连,也可以通过软件配置寄存器的方式触发DMA通道请求。LPUART的控制寄存器有对应的DMA使能位,如下图所示:

image.png

1.1 DMA中断

DMA的每个通道都有三种中断事件标志:DMA半传输、DMA传输完成和DMA传输出错。各通道单独的中断请求由这3种事件标志逻辑或起来。可以配置寄存器的对应位来使能这些中断:

1.2 LPUART使用DMA的配置步骤

  1. 根据基本UART配置步骤配置LPUART
  2. 使能LPUEN的DMAR与DMAT位激活DMA模式
  3. 使能DMA时钟
  4. 发送需要配置DMA的源地址(存储器地址)和目的地址(LPUTXD),传输的数据量以及DMA通道
  5. 配置完发送后,只要TXFIFO为空,就会请求DMA发送
  6. 接收需要配置DMA的源地址(LPURXD)和目的地址(存储器地址),传输的数据量以及DMA通道
  7. 配置完接收后,只要RXFIFO有数据,即不为空,就会请求DMA接收

1.3 功能代码实现

下面例程实现了使用DMA发送和接收LPUART数据,发送和接收完成后进入中断,例程在基本UART收发实验的基础上完成。

a.

申请例程所用到的TX和RX缓存、TX和RX完成标志:

uint8_t TX_Buffer[16], RX_Buffer[16];
uint8_t TX_Complete = 0, RX_Complete = 0;

b.

配置NVIC:

NVIC_InitTypeDef  NVIC_InitStruct;
NVIC_InitStruct.NVIC_IRQChannel = DMA1_Channel2_3_IRQn;
NVIC_InitStruct.NVIC_IRQChannelPriority = 2;
NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStruct);

c.

配置DMA通道2为LPUART_TX:

void LPUART_DMA_TX_Init(void)
{
    DMA_InitTypeDef DMA_InitStruct;

    RCC_DMA_ClockCmd(DMA1, ENABLE);
    DMA_DeInit(DMA1_Channel2);
    DMA_StructInit(&DMA_InitStruct);
    //DMA transfer peripheral address
    DMA_InitStruct.DMA_PeripheralBaseAddr = (uint32_t)&LPUART1- >LPUTXD;
    //DMA transfer memory address
    DMA_InitStruct.DMA_MemoryBaseAddr = (uint32_t)TX_Buffer;
    //DMA transfer direction from peripheral to memory
    DMA_InitStruct.DMA_DIR = DMA_DIR_PeripheralDST;
    //DMA cache size
    DMA_InitStruct.DMA_BufferSize = 16;
    //The peripheral address is forbidden to move backward
    DMA_InitStruct.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
    //The memory address is shifted backward
    DMA_InitStruct.DMA_MemoryInc = DMA_MemoryInc_Enable;
    //Define the peripheral data width to 8 bits
    DMA_InitStruct.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
    DMA_InitStruct.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
    DMA_InitStruct.DMA_Mode = DMA_Mode_Normal;
    DMA_InitStruct.DMA_Priority = DMA_Priority_Medium;
    //M2M mode is disabled
    DMA_InitStruct.DMA_M2M = DMA_M2M_Disable;
    DMA_InitStruct.DMA_Auto_reload = DMA_Auto_Reload_Disable;
    DMA_Init(DMA1_Channel2, &DMA_InitStruct);
    DMA_SetChannelMuxSource(DMA1_Channel2, DMA1_MUX_LPUART1_TX);
    //Enable LPUART_DMA1_Channel Transfer complete interrupt
    DMA_ITConfig(DMA1_Channel2, DMA_IT_TC, ENABLE);
    LPUART_TX_DMACmd(LPUART1, ENABLE);
    while((LPUART1- >LPUEN & LPUART_LPUEN_DMAT) == 0);
    //LPUART_DMA1_Channel enable
    DMA_Cmd(DMA1_Channel2, ENABLE);
}

d.

配置DMA通道3为LPUART_RX:

void LPUART_DMA_RX_Init(void)
{
    DMA_InitTypeDef DMA_InitStruct;

    RCC_DMA_ClockCmd(DMA1, ENABLE);

    DMA_DeInit(DMA1_Channel3);
    DMA_StructInit(&DMA_InitStruct);
    //DMA transfer peripheral address
    DMA_InitStruct.DMA_PeripheralBaseAddr = (uint32_t)&LPUART1- >LPURXD;
    //DMA transfer memory address
    DMA_InitStruct.DMA_MemoryBaseAddr = (uint32_t)RX_Buffer;
    //DMA transfer direction from peripheral to memory
    DMA_InitStruct.DMA_DIR = DMA_DIR_PeripheralSRC;
    //DMA cache size
    DMA_InitStruct.DMA_BufferSize = 16;
    //The peripheral address is forbidden to move backward
    DMA_InitStruct.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
    //The memory address is shifted backward
    DMA_InitStruct.DMA_MemoryInc = DMA_MemoryInc_Enable;
    //Define the peripheral data width to 8 bits
    DMA_InitStruct.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
    DMA_InitStruct.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
    DMA_InitStruct.DMA_Mode = DMA_Mode_Normal;
    DMA_InitStruct.DMA_Priority = DMA_Priority_Medium;
    //M2M mode is disabled
    DMA_InitStruct.DMA_M2M = DMA_M2M_Disable;
    DMA_InitStruct.DMA_Auto_reload = DMA_Auto_Reload_Disable;
    DMA_Init(DMA1_Channel3, &DMA_InitStruct);
    DMA_SetChannelMuxSource(DMA1_Channel3, DMA1_MUX_LPUART1_RX);
    //Enable LPUART_DMA1_Channel Transfer complete interrupt
    DMA_ITConfig(DMA1_Channel3, DMA_IT_TC, ENABLE);
    LPUART_RX_DMACmd(LPUART1, ENABLE);
    while((LPUART1- >LPUEN & LPUART_LPUEN_DMAR) == 0);
    //LPUART_DMA1_Channel enable
    DMA_Cmd(DMA1_Channel3, ENABLE);
}

e.

编写中断服务函数:

void DMA1_Channel2_3_IRQHandler(void)
{
    if(DMA_GetITStatus(DMA1_IT_TC2))
    {
        DMA_ClearITPendingBit(DMA1_IT_TC2);
        TX_Complete = 1;
    }
    if(DMA_GetITStatus(DMA1_IT_TC3))
    {
        DMA_ClearITPendingBit(DMA1_IT_TC3);
        RX_Complete = 1;
    }
}

f.

编写实验样例:

void LPUART_RxTx_DMA_Test(void)
{
    uint8_t i;

    for(i = 0; i < 16; i++)
    {
        TX_Buffer[i] = i;
    }
    LPUART_DMA_TX_Init();
    LPUART_DMA_RX_Init();

    while(1)
    {
        if(TX_Complete == 1)
        {
            TX_Complete = 0;
            DMA1_Channel3- >CMAR = (uint32_t)RX_Buffer;
            DMA1_Channel3- >CNDTR = 16;
            DMA_Cmd(DMA1_Channel3, ENABLE);
        }
        if(RX_Complete == 1)
        {
            RX_Complete = 0;
            memcpy((void *)TX_Buffer, (void *)RX_Buffer, 16);
            DMA1_Channel2- >CMAR = (uint32_t)TX_Buffer;
            DMA1_Channel2- >CNDTR = 16;
            DMA_Cmd(DMA1_Channel2, ENABLE);
        }
    }
}

g.

在main函数中配置好LPUART和DMA后,调用实验函数LPUART_RxTx_DMA_Test,可以得到如下结果:

image.png

2 使用数据匹配寄存器匹配到指定字符后唤醒MCU

为进一步降低系统功耗,MM32L0130系列的LPUART提供了一种接收到指定字符才能唤醒低功耗状态的MCU的功能。用于唤醒的指定字符,由数据匹配寄存器确定:

image.png

2.1 接收中断配置寄存器

可以通过LPUART的LPUCON.RXEV寄存器配置唤醒事件为START位、一帧接收完成、一帧数据匹配或者RXD下降沿唤醒。

image.png

2.2 功能代码实现

匹配指定字符唤醒MCU功能,需要在上期讲解的LPUART唤醒低功耗模式中的MCU基础上修改中断事件配置、指定唤醒字符,具体代码如下:

a.

配置LPUART接收中断事件为接收数据匹配成功:

LPUART_InitTypeDef init_struct;

init_struct.LPUART_Clock_Source = 0;
init_struct.LPUART_BaudRate = LPUART_Baudrate_9600;
init_struct.LPUART_WordLength = LPUART_WordLength_8b;
init_struct.LPUART_StopBits = LPUART_StopBits_1;
init_struct.LPUART_Parity = LPUART_Parity_No;
init_struct.LPUART_MDU_Value = 0x952;
init_struct.LPUART_NEDET_Source = LPUART_NegativeDectect_Source2;
init_struct.LPUART_RecvEventCfg = LPUART_RecvEvent_RecvData_Mactched;
LPUART_Init(LPUART1, &init_struct);

b.

配置特定的唤醒字符:

LPUART_SetMatchData(LPUART1, ‘5’); //指定字符’5’为唤醒字符

c.

编写中断服务程序,判断接收匹配事件并清除标志:

void LPUART1_IRQHandler()
{
    if(LPUART_GetFlagStatus(LPUART1, LPUART_LPUSTA_START))
    {
        LPUART_ClearFlagStatus(LPUART1, LPUART_LPUSTA_START);
    }
    if(LPUART_GetFlagStatus(LPUART1, LPUART_LPUSTA_MATCH))
    {//判断接收中断匹配事件
        LPUART_ClearFlagStatus(LPUART1, LPUART_LPUSTA_MATCH);

    }
    if(LPUART_GetITStatus(LPUART1, LPUART_LPUIF_RXIF) == SET) {
        LPUART_ClearITPendingBit(LPUART1, LPUART_LPUIF_RXIF);
        rxDataBuf[cnt] = LPUART_ReceiveData(LPUART1);
        if(++cnt >= 10)
            cnt_flag = 1;
    }
    EXTI_ClearITPendingBit(EXTI_Line22);
}

d.

编写试验样例:

void LPUART_Wakeup_Test(void)
{
    uint8_t temp, i;
    char string1[] = "LPUART wakeup mcu test!\\r\\n";
    char string2[] = "mcu stop!\\r\\n";
    char string3[] = "mcu wakeup!\\r\\n";

    for(i = 0; i < strlen(string1); i++)
    {
        Output_Byte(LPUART1, string1[i]);
    }
    DELAY_Ms(20);
    for(i = 0; i < strlen(string2); i++)
    {
        Output_Byte(LPUART1, string2[i]);
    }
    PWR_EnterSTOPMode(PWR_Regulator_LowPower, PWR_STOPEntry_WFI);//休眠
    for(i = 0; i < strlen(string3); i++)
    {
        Output_Byte(LPUART1, string3[i]);
    }

    while(1)
    {

    }
}

e.

在main函数配置好LPUART后,调用实验函数LPUART_Wakeup_Test,可以得到如下结果:

image.png

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 寄存器
    +关注

    关注

    30

    文章

    5022

    浏览量

    117633
  • 异步收发器
    +关注

    关注

    0

    文章

    36

    浏览量

    10794
  • FIFO存储
    +关注

    关注

    0

    文章

    102

    浏览量

    5892
  • 串口中断
    +关注

    关注

    0

    文章

    63

    浏览量

    13596
  • MCU芯片
    +关注

    关注

    3

    文章

    214

    浏览量

    11142
收藏 人收藏

    评论

    相关推荐

    基于MM32L0130LPUART应用(1)

    LPUART(Low power universal asynchronous receiver transmitter,低功耗通用异步收发器),相比标准的UART,其功耗极低,支持在低功耗模式下运行,并且可以将MCU从低功耗模式唤醒。
    的头像 发表于 11-18 10:35 2876次阅读
    基于<b class='flag-5'>MM32L0130</b>的<b class='flag-5'>LPUART</b>应用(1)

    使用MM32L0130 IRM实现红外发码

    1、使用MM32L0130 IRM实现红外发码  红外遥控是一种无线、非接触控制技术,具有抗干扰能力强,信息传输可靠,功耗低,成本低,易于实现等显著优点,被诸多电子设备包括消费电子、家用电器、安防
    发表于 10-21 14:22

    基于MM32L0130的低功耗电子时钟设计方案相关资料分享

    1、基于MM32L0130的低功耗电子时钟设计  MM32L0130作为灵动微电子推出的一款低功耗芯片,内置多种省电工作模式保证低功耗应用的要求。前面章节分别对MM32L0130片上外设SLCD
    发表于 11-09 16:00

    基于MM32L0130LPUART外设应用简介

    运行,并且可以将MCU从低功耗模式唤醒。本文介绍MM32全新低功耗系列MM32L0130LPUART外设,实现基本UART收发通信、通过UART中断使MCU从低功耗模式中唤醒。1 LPUAR
    发表于 12-09 16:04

    请问有人使用IAR进行过MM32L0130的开发吗?

    我在使用IAR8.30进行MM32L0130开发板试用时遇到了一个棘手的问题,其例程能够下载到开发板(至少在IAR中任何报错,也可以在线调试),可是就是一直开在时钟配置阶段,一直没有配置成功,有人遇到过这样的问题吗?或者在调试其他单片机时是否有类似现象?麻烦指导一下解决办法
    发表于 12-18 21:48

    使用MM32L0130片上IRM模块实现红外发码

    灵动股份推出的MM32L0130系列MCU具有片上IRM红外调制器,该模块使用片上的定时器和串口,实现数据的 FSK/ASK 调制,以满足红外发码的需求。
    的头像 发表于 10-13 17:03 933次阅读

    MM32L0130 RTC日历和闹钟

    RTC 模块是用于提供时间(时、分、秒、亚秒)和日期(年、月、日)功能的定时计数器,日历以 BCD码的格式显示。内部包含周期性的唤醒单元,用于唤醒低功耗模式。支持夏令时补偿,支持数字校准补偿晶振精度的偏差。灵动微电子推出的MM32L0130系列MCU片上RTC外设具有以下特征。
    的头像 发表于 10-28 10:37 939次阅读

    基于MM32L0130的低功耗电子时钟设计

    MM32L0130作为灵动微电子推出的一款低功耗芯片,内置多种省电工作模式保证低功耗应用的要求。前面章节分别对MM32L0130片上外设SLCD和RTC做了相关描述,并列举对应程序实现SLCD驱动
    的头像 发表于 11-04 10:12 1070次阅读

    基于MM32L0130LPUART应用(2)

    LPUART(Low power universal asynchronous receiver transmitter,低功耗通用异步收发器),相比标准的UART,其功耗极低,支持在低功耗模式下运行,并且可以将MCU从低功耗模式唤醒。
    的头像 发表于 11-24 17:52 711次阅读

    MM32L0130 产品手册(中文版)

    MM32L0130 产品手册(中文版)
    发表于 02-27 18:24 0次下载
    <b class='flag-5'>MM32L0130</b> 产品手册(中文版)

    MM32L0130 产品手册(英文版)

    MM32L0130 产品手册(英文版)
    发表于 02-27 18:25 0次下载
    <b class='flag-5'>MM32L0130</b> 产品手册(英文版)

    MM32L0130 用户手册(中文版)

    MM32L0130 用户手册(中文版)
    发表于 02-27 18:26 0次下载
    <b class='flag-5'>MM32L0130</b> 用户手册(中文版)

    MM32L0130 用户手册(英文版)

    MM32L0130 用户手册(英文版)
    发表于 02-27 18:26 0次下载
    <b class='flag-5'>MM32L0130</b> 用户手册(英文版)

    基于MM32L0130LPUART应用(1)

    LPUART(Low power universal asynchronous receiver transmitter,低功耗通用异步收发器),相比标准的UART,其功耗极低,支持在低功耗模式下运行,并且可以将MCU从低功耗模式唤醒。
    的头像 发表于 06-02 17:27 756次阅读
    基于<b class='flag-5'>MM32L0130</b>的<b class='flag-5'>LPUART</b>应用(1)

    使用MM32L0130和HYS1254的电子秤方案验证

    NPI提了需求,需要验证使用友商SDADC芯片和MM32L0130微控制器集成的一个系统应用方案。
    的头像 发表于 10-17 17:16 317次阅读
    使用<b class='flag-5'>MM32L0130</b>和HYS1254的电子秤方案验证