0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

SiC碳化硅单晶的生长原理

qq876811522 来源:晟光硅研 2023-05-18 09:54 次阅读

碳化硅单晶衬底材料(Silicon Carbide Single Crystal Substrate Materials,以下简称SiC衬底)也是晶体材料的一种,属于宽禁带半导体材料,具有耐高压、耐高温、高频、低损耗等优势,是制备大功率电力电子器件以及微波射频器件的基础性材料。

SiC的晶体结构

SiC单晶是由Si和C两种元素按照1:1化学计量比组成的Ⅳ-Ⅳ族化合物半导体材料,硬度仅次于金刚石。

6828a88e-f4ae-11ed-90ce-dac502259ad0.png

C原子和Si原子都有4个价电子,可以形成4个共价键,组成SiC基本结构单元——Si-C四面体,Si原子和C原子的配位数都是4,即每个C原子周围都有4个Si原子,每个Si原子周围都有4个C原子。

6833efbe-f4ae-11ed-90ce-dac502259ad0.png

SiC衬底作为一种晶体材料,也具有原子层周期性堆垛的特性。Si-C双原子层沿着[0001]方向进行堆垛,由于层与层之间的键能差异小,原子层之间容易产生不同的连接方式,这就导致SiC具有较多种类的晶型。常见晶型有2H-SiC、3C-SiC、4H-SiC、6H-SiC、15R-SiC等。原子层间的排列方式不同,使得组成原子的占位不同,2H晶型中原子全为六方位。而3C晶型中的原子全为立方位。不同占位比会影响晶体的禁带宽度以及载流子性能。随着六方位占比增加,禁带宽度逐渐增大,从3C晶型禁带宽度的2.4eV到2H晶型的3.2eV。

68420aae-f4ae-11ed-90ce-dac502259ad0.png

其中,按照“ABCB”顺序进行堆垛的结构称为4H晶型。虽然不同晶型的SiC晶体具有相同的化学成分,但是它们的物理性质,特别是禁带宽度、载流子迁移率等特性有较大的差别。从理论上来看,2H晶型全为六方堆积方式——禁带宽度最大,应该最适合作为大功率器件的制作材料。但是由下面相图,可以看出其制备条件在实际操作过程中难以实现制造。因此在现实情境下,选择了4H晶型。其在制造和各方面的性能更适合半导体领域的应用。

684734d4-f4ae-11ed-90ce-dac502259ad0.png

上图也可以看出4H晶型在相图中的面积并不大,因此制造的难度系数也是非常高的。生长温度、压力等多种因素都会影响SiC衬底的晶型稳定性,因此想要获得高质量、晶型均一的单晶材料,在制备过程中必须精确控制如生长温度、生长压力、生长速度等多种工艺参数

SiC制备方法:物理气相升华法(PVT法)

目前SiC晶体的生长方法主要有物理气相传输法(Physical Vapor Transport Method, PVT法)、高温化学气相沉积法(High Temperature Chemical Vapor Deposition, HTCVD法)、液相法(Liquid Phase Method)等。其中,PVT法是已发展较为成熟,更适用于产业化批量生产的方法。

684eb524-f4ae-11ed-90ce-dac502259ad0.png

所谓PVT法,是指将SiC籽晶放置在坩埚顶部,将SiC粉料作为原料放置在坩埚底部,在高温低压的密闭环境下,SiC粉料升华,并在温度梯度和浓度差的作用下向上传输至籽晶附近,达到过饱和状态后再结晶的一种方法。该方法可以实现SiC晶体尺寸和特定晶型的可控生长。

6859dbb6-f4ae-11ed-90ce-dac502259ad0.png

然而,使用PVT法生长SiC晶体需要在长时间的生长过程中,始终维持适宜的生长条件,否则会导致晶格紊乱,从而影响晶体的质量。但SiC晶体的生长是在密闭空间内完成的,有效的监控手段少,变量多,因此工艺控制的难度较高。

单一晶型稳定生长的主要机制:台阶流动生长模式

在PVT法生长SiC晶体的过程中,台阶流动生长模式(Step Flow Growth)被认为是单一晶型稳定生长的主要机制。

6862f9d0-f4ae-11ed-90ce-dac502259ad0.png

气化后的Si原子和C原子会优先在kink点位置与晶体表面原子成键,在此处成核生长,从而使得各个台阶平行向前流动。当晶体表面产生台阶宽度远远超过吸附原子的扩散自由程时,大量吸附原子就可能发生团聚,形成的二维岛状生长模式会破坏台阶流动生长模式,导致4H晶型结构信息丢失,从而产生多型缺陷。因此,工艺参数的调节要实现对表面台阶结构的调控,以此抑制多型缺陷的产生,达到获得单一晶型的目的,最终制备出高品质的晶体。

686b8c62-f4ae-11ed-90ce-dac502259ad0.jpg

当然,制备高品质的SiC衬底,晶体生长只是第一步,产品最终达到使用要求前,还需要经过切割、研磨、倒角、抛光、清洗、检测等一系列工序。SiC单晶作为一种硬脆材料,对于加工环节的技术要求也很高,各生产环节中产生的损伤都有可能具备一定的遗传性,传递到下一道工序,最终影响产品质量,因此高效加工SiC衬底的技术也备受产业、学术界关注。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    328

    文章

    24534

    浏览量

    202193
  • 射频
    +关注

    关注

    101

    文章

    5361

    浏览量

    165847
  • 单晶
    +关注

    关注

    1

    文章

    60

    浏览量

    14018
  • SiC
    SiC
    +关注

    关注

    27

    文章

    2441

    浏览量

    61405
  • 碳化硅
    +关注

    关注

    24

    文章

    2434

    浏览量

    47543

原文标题:SiC碳化硅单晶的生长原理

文章出处:【微信号:汽车半导体情报局,微信公众号:汽车半导体情报局】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    SIC碳化硅二极管

    SIC碳化硅二极管
    发表于 11-04 15:50

    碳化硅(SiC)肖特基二极管的特点

    器件的特点  碳化硅SiC的能带间隔为硅的2.8倍(宽禁带),达到3.09电子伏特。其绝缘击穿场强为硅的5.3倍,高达3.2MV/cm.,其导热率是硅的3.3倍,为49w/cm.k。  它与硅半导体材料
    发表于 01-11 13:42

    碳化硅的历史与应用介绍

    硅与碳的唯一合成物就是碳化硅(SiC),俗称金刚砂。SiC 在自然界中以矿物碳硅石的形式存在,但十分稀少。不过,自1893 年以来,粉状碳化硅已被大量生产用作研磨剂。
    发表于 07-02 07:14

    碳化硅深层的特性

    。超硬度的材料包括:金刚石、立方氮化硼,碳化硼、碳化硅、氮化硅碳化钛等。3)高强度。在常温和高温下,碳化硅的机械强度都很高。25℃下,
    发表于 07-04 04:20

    碳化硅基板——三代半导体的领军者

    碳化硅SiC)即使在高达1400℃的温度下,仍能保持其强度。这种材料的明显特点在于导热和电气半导体的导电性极高。碳化硅化学和物理稳定性,碳化硅的硬度和耐腐蚀性均较高。是陶瓷材料中高温
    发表于 01-12 11:48

    什么是碳化硅SiC)?它有哪些用途?

    什么是碳化硅SiC)?它有哪些用途?碳化硅SiC)的结构是如何构成的?
    发表于 06-18 08:32

    传统的硅组件、碳化硅(Sic)和氮化镓(GaN)

    传统的硅组件、碳化硅(Sic)和氮化镓(GaN)伴随着第三代半导体电力电子器件的诞生,以碳化硅(Sic)和氮化镓(GaN)为代表的新型半导体材料走入了我们的视野。
    发表于 09-23 15:02

    请教碳化硅刻蚀工艺

    最近需要用到干法刻蚀技术去刻蚀碳化硅,采用的是ICP系列设备,刻蚀气体使用的是SF6+O2,碳化硅上面没有做任何掩膜,就是为了去除SiC表面损伤层达到表面改性的效果。但是实际刻蚀过程中总是会在
    发表于 08-31 16:29

    碳化硅单晶衬底加工技术现状及发展趋势

    摘 要: 碳化硅单晶具有极高的硬度和脆性,传统加工方式已经不能有效地获得具有超高光滑表面的碳化硅晶片。针对碳化硅单晶衬底加工技术,本文综述了碳化硅单晶切片、薄化与抛光工艺段的研究现状,
    的头像 发表于 01-11 11:05 1372次阅读

    SiC碳化硅二极管和SiC碳化硅MOSFET产业链介绍

    我们拿慧制敏造出品的KNSCHA碳化硅功率器件:碳化硅二极管和碳化硅MOSFET展开说明。碳和硅进过化合先合成碳化硅,然后碳化硅打磨成为粉末
    的头像 发表于 02-21 10:04 1773次阅读
    <b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b>二极管和<b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b>MOSFET产业链介绍

    6.4.1.2 SiC上的肖特基接触∈《碳化硅技术基本原理——生长、表征、器件和应用》

    6.4.1.2SiC上的肖特基接触6.4.1n型和p型SiC的肖特基接触6.4金属化第6章碳化硅器件工艺《碳化硅技术基本原理——生长、表征、
    的头像 发表于 01-24 10:22 507次阅读
    6.4.1.2 <b class='flag-5'>SiC</b>上的肖特基接触∈《<b class='flag-5'>碳化硅</b>技术基本原理——<b class='flag-5'>生长</b>、表征、器件和应用》

    6.4.2.2 n型SiC的欧姆接触∈《碳化硅技术基本原理——生长、表征、器件和应用》

    6.4.2.2n型SiC的欧姆接触6.4.2n型和p型SiC的欧姆接触6.4金属化第6章碳化硅器件工艺《碳化硅技术基本原理——生长、表征、器
    的头像 发表于 01-25 09:18 789次阅读
    6.4.2.2 n型<b class='flag-5'>SiC</b>的欧姆接触∈《<b class='flag-5'>碳化硅</b>技术基本原理——<b class='flag-5'>生长</b>、表征、器件和应用》

    6.4.2.3 p型SiC的欧姆接触∈《碳化硅技术基本原理——生长、表征、器件和应用》

    6.4.2.3p型SiC的欧姆接触6.4.2n型和p型SiC的欧姆接触6.4金属化第6章碳化硅器件工艺《碳化硅技术基本原理——生长、表征、器
    的头像 发表于 01-26 10:08 688次阅读
    6.4.2.3 p型<b class='flag-5'>SiC</b>的欧姆接触∈《<b class='flag-5'>碳化硅</b>技术基本原理——<b class='flag-5'>生长</b>、表征、器件和应用》

    5.2.3 扩展缺陷对SiC器件性能的影响∈《碳化硅技术基本原理——生长、表征、器件和应用》

    5.2.3扩展缺陷对SiC器件性能的影响5.2SiC的扩展缺陷第5章碳化硅的缺陷及表征技术《碳化硅技术基本原理——生长、表征、器件和应用》往
    的头像 发表于 01-06 09:25 648次阅读
    5.2.3 扩展缺陷对<b class='flag-5'>SiC</b>器件性能的影响∈《<b class='flag-5'>碳化硅</b>技术基本原理——<b class='flag-5'>生长</b>、表征、器件和应用》

    河南第一块8英寸碳化硅SiC单晶出炉!

    平煤神马集团碳化硅半导体粉体验证线传来喜讯——实验室成功生长出河南省第一块8英寸碳化硅单晶,全面验证了中宜创芯公司碳化硅半导体粉体在长晶方面的独特优势。
    的头像 发表于 02-21 09:32 420次阅读