0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习算法的分类

RG15206629988 来源:行业学习与研究 2023-04-18 16:26 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

一、监督学习根据有无标签分类

根据有无标签,监督学习可分类为:传统的监督学习(Traditional Supervised Learning)、非监督学习(Unsupervised Learning)、半监督学习(Semi-supervised Learning)。

(1)传统的监督学习

传统的监督学习的每个训练数据均具有标签(标签可被理解为每个训练数据的正确输出,计算机可通过其输出值与标签对比进行机器学习)。传统的监督学习包括:支持向量机(Support Vector Machine)、人工神经网络 (Neural Networks)、深度神经网络(Deep Neural Networks)。

(2)非监督学习

非监督学习的所有数据均没有标签。非监督学习假设同一类训练数据在空间中距离更近(个人理解:例如将若干含有两个变量的训练数据绘制于平面直角坐标系中,同一类训练数据在坐标系中的距离更近),计算机可根据样本空间信息,将空间距离更近的数据分为一类。非监督学习包括:聚类(Clustering)、EM算法(Expectation-Maximization Algorithm)、主成分分析(Principle Component Analysis)。

7a965128-ddc1-11ed-bfe3-dac502259ad0.png

图片来源:中国慕课大学《机器学习概论》

(3)半监督学习

半监督学习中,一部分训练数据具有标签,一部分训练数据没有标签。因为随着互联网的普及,互联网中存在大量数据,将所有互联网数据进行标注的耗费较大,所以研究如何通过少量标注数据和大量未标注数据共同训练机器学习算法,即半监督学习成为机器学习的研究方向之一。

二、监督学习根据标签固有属性分类

根据标签固有属性,监督学习可被分为分类(Classification)和回归(Regression)。如果标签是离散的值,该种监督学习被称为分类;如果标签是连续的值,该种监督学习被称为回归。

7a9d914a-ddc1-11ed-bfe3-dac502259ad0.png

图片来源:中国慕课大学《机器学习概论》

人脸识别属于监督学习中的分类。人脸识别的任务包括两个:其一是识别两张人脸图片是否为同一个人,开发人员可将两张人脸图片是同一个人的标签定义为1,将两张人脸图片不是同一个人的标签定义为0;其二是在多张人脸图片(也可以是多个人脸在一张图片中)识别某个人脸,开发人员可将每个人脸定义标签为一个数字,可根据数字1、2、3……N的顺序为每个人脸定义标签。以上人脸识别两个任务的标签均是离散的值。

7ab17aca-ddc1-11ed-bfe3-dac502259ad0.png

图片来源:中国慕课大学《机器学习概论》

预测股票价格、预测房价、预测温度、预测年龄等问题属于监督学习问题中的回归问题。一般,股票、房价、温度、年龄变化的数据(个人理解:此处的数据可被理解为标签)可被视为连续的值。

虽然监督学习可被分为分类和回归,但分类和回归的界限是模糊的,二者可以相互转换,这是由于连续数据和离散数据是可以相互转换的。例如:如果将房价值四舍五入,得出一组离散的数据(标签),那么预测房价问题可属于分类问题。因此,一个可以解决回归问题的机器学习算法经过较少的改造可解决分类问题,反之亦然。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106787
  • 计算机
    +关注

    关注

    19

    文章

    7764

    浏览量

    92674
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136230

原文标题:机器学习相关介绍(3)——机器学习算法的分类(下)

文章出处:【微信号:行业学习与研究,微信公众号:行业学习与研究】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    如何深度学习机器视觉的应用场景

    深度学习视觉应用场景大全 工业制造领域 复杂缺陷检测:处理传统算法难以描述的非标准化缺陷模式 非标产品分类:对形状、颜色、纹理多变的产品进行智能分类 外观质量评估:基于
    的头像 发表于 11-27 10:19 47次阅读

    PID控制算法学习笔记资料

    用于新手学习PID控制算法
    发表于 08-12 16:22 7次下载

    FPGA在机器学习中的具体应用

    ,越来越多地被应用于机器学习任务中。本文将探讨 FPGA 在机器学习中的应用,特别是在加速神经网络推理、优化算法和提升处理效率方面的优势。
    的头像 发表于 07-16 15:34 2631次阅读

    机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统

    本文转自:DeepHubIMBA无监督异常检测作为机器学习领域的重要分支,专门用于在缺乏标记数据的环境中识别异常事件。本文深入探讨异常检测技术的理论基础与实践应用,通过IsolationForest
    的头像 发表于 06-24 11:40 1197次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>异常检测实战:用Isolation Forest快速构建无标签异常检测系统

    【「# ROS 2智能机器人开发实践」阅读体验】视觉实现的基础算法的应用

    学习建议 对于初学者,建议先通过仿真(如Gazebo)验证算法,再迁移到真实机器人,以降低硬件调试成本。 多参与开源社区(如ROS2的GitHub项目),学习前沿技术并贡献代码
    发表于 05-03 19:41

    基于RV1126开发板实现自学习图像分类方案

    在RV1126开发板上实现自学习:在识别前对物体图片进行模型学习,训练完成后通过算法分类得出图像的模型ID。 方案设计逻辑流程图,方案代码分为分为两个业务流程,主体代码负
    的头像 发表于 04-21 13:37 11次阅读
    基于RV1126开发板实现自<b class='flag-5'>学习</b>图像<b class='flag-5'>分类</b>方案

    复合机器人为什么要使用单点纠偏算法

    复合机器人单点纠偏算法
    的头像 发表于 04-20 14:59 501次阅读
    复合<b class='flag-5'>机器</b>人为什么要使用单点纠偏<b class='flag-5'>算法</b>?

    十大鲜为人知却功能强大的机器学习模型

    本文转自:QuantML当我们谈论机器学习时,线性回归、决策树和神经网络这些常见的算法往往占据了主导地位。然而,除了这些众所周知的模型之外,还存在一些鲜为人知但功能强大的算法,它们能够
    的头像 发表于 04-02 14:10 913次阅读
    十大鲜为人知却功能强大的<b class='flag-5'>机器</b><b class='flag-5'>学习</b>模型

    **【技术干货】Nordic nRF54系列芯片:传感器数据采集与AI机器学习的完美结合**

    机器学习算法,解决传感器数据采集难题! 1. nRF54系列支持OTA吗? 答:支持!nRF54L系列基于Zephyr的MCUBOOT和SMP DFU库,支持BLE和UART等多种OTA方式
    发表于 04-01 00:00

    请问STM32部署机器学习算法硬件至少要使用哪个系列的芯片?

    STM32部署机器学习算法硬件至少要使用哪个系列的芯片?
    发表于 03-13 07:34

    机器学习模型市场前景如何

    当今,随着算法的不断优化、数据量的爆炸式增长以及计算能力的飞速提升,机器学习模型的市场前景愈发广阔。下面,AI部落小编将探讨机器学习模型市场
    的头像 发表于 02-13 09:39 619次阅读

    xgboost在图像分类中的应用

    XGBoost(eXtreme Gradient Boosting)是一种高效的机器学习算法,它基于梯度提升框架,通过构建多个弱学习器(通常是决策树)来提高模型的性能。XGBoost因
    的头像 发表于 01-19 11:16 1558次阅读

    华为云 Flexus X 实例部署安装 Jupyter Notebook,学习 AI,机器学习算法

    前言 由于本人最近在学习一些机器算法,AI 算法的知识,需要搭建一个学习环境,所以就在最近购买的华为云 Flexus X 实例上安装了
    的头像 发表于 01-02 13:43 860次阅读
    华为云 Flexus X 实例部署安装 Jupyter Notebook,<b class='flag-5'>学习</b> AI,<b class='flag-5'>机器</b><b class='flag-5'>学习</b><b class='flag-5'>算法</b>

    传统机器学习方法和应用指导

    在上一篇文章中,我们介绍了机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础知识和多种算法特征,供各位老师选择。 01 传统
    的头像 发表于 12-30 09:16 1969次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    如何选择云原生机器学习平台

    当今,云原生机器学习平台因其弹性扩展、高效部署、低成本运营等优势,逐渐成为企业构建和部署机器学习应用的首选。然而,市场上的云原生机器
    的头像 发表于 12-25 11:54 697次阅读