0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

首次MoS₂层间原位构建静电排斥实现超快锂离子传输

清新电源 来源:nanomicroletters 2023-04-13 09:23 次阅读

高理论容量和独特的层状结构使MoS₂成为一种很有前途的锂离子电池负极材料。然而MoS₂层状结构的各向异性离子输运和其较差的本征导电性,导致差的离子传输能力。针对这些问题,本文提出由Co²⁺取代Mo⁴⁺在MoS₂层间原位构建层间静电排斥,其可打破层间范德华力的限制,制备单层MoS₂,从而建立各向同性的离子传输路径。同时,掺杂的Co原子改变了单层MoS₂的电子结构,从而提高其电导率。重要的是,掺杂的Co原子可以转化为Co纳米颗粒,从而产生空间电荷区以加速离子传输。因此,Co掺杂的单层MoS₂展示出了超快的锂离子传输特性。

8ac9945e-d986-11ed-bfe3-dac502259ad0.jpg

本文亮点

1. 高压气相下,首次利用有机离子液体在MoS₂层间原位构建了静电排斥,成功制备了Co掺杂单层MoS₂。

2. 掺杂的Co原子从根本上降低了单层MoS₂的带隙和锂离子扩散能垒,并且可以转化为超小的Co纳米颗粒(~2nm),在转化反应过程中产生强烈的表面电容效应

3. 作为锂离子电池负极材料,Co掺杂单层MoS₂表现出超快的离子传输能力以及超高容量出色的循环稳定性

内容简介

高理论容量和独特的层状结构使MoS₂成为一种很有前途的锂离子电池负极材料。然而MoS₂层状结构的各向异性离子输运和其较差的本征导电性,导致不可接受的离子传输能力。针对这些问题,南方科技大学赵天寿院士和韩美胜副研究员等人提出由Co²⁺取代Mo⁴⁺在MoS₂层间原位构建层间静电排斥,通过调节Co²⁺掺杂量可以调控层间静电斥力大小,当其远大于层间范德华力时,可以获得单层MoS₂,从而建立各向同性的离子传输路径。同时,DFT模拟揭示了掺杂的Co原子改变了单层MoS₂的电子结构,从而提高其本征电导率,降低了锂离子扩散能垒,加速了锂离子传输速度。

重要的是,掺杂的Co原子可以转化为超细小的Co纳米颗粒,从而产生强烈的表面电容现象,从而加速锂离子传输。在半电池中,在0.1 A/g的电流密度下,其具有1661.6mAh/g的容量,在20A/g时容量仍高达1063.3mAh/g。在全电池中,在4C的电流密度下,其在11.5min的充电时间,能量密度可以高达136.2 Wh/kg,维持了76.6%的能量保持率,证明了其具有超快的锂离子传输特性。

图文导读

I Co掺杂单层MoS₂形成机制

本文使用四硫代钼酸铵、DMF和金属离子液体异辛酸钴作为前驱体,将其封装在密闭装置中加热,使前驱体热解,金属离子液体中的Co²⁺会原位取代MoS₂中Mo⁴⁺的位置,使形成的MoS₂带有负电荷,根据同种电荷相互排斥理论,在MoS₂层间会产生静电斥力,在静电斥力和前驱体热解产生的气态基团的共同作用下,单层MoS₂形成(图1a-d)。为了说明这一过程,进行了DFT模拟计算。从图1e-g可以看出,随着Co²⁺掺杂量的增加,MoS₂层间距会逐渐变大,当Co和Mo原子比为1:2时,层间距扩大到2.36nm,此时层间范德华力消失,单层MoS₂形成。从图1h-k可以看出,Co掺杂的单层MoS₂均匀分散到了N,O共掺杂的碳基底中。

8ad3a75a-d986-11ed-bfe3-dac502259ad0.png

图1. a-d单层MoS₂的形成机制,e-g DFT模拟计算结果,h-k TEM表征。

II Co掺杂单层MoS₂材料结构和成分分析

CoMoS₂/C-I为低Co掺杂量获得的样品,CoMoS₂/C-II为适中Co掺杂量获得的样品,CoMoS₂/C-III为高Co掺杂量获得的样品。从图2a可以看出,随着Co掺杂量增加,(002)逐渐消失,证实了单层MoS₂的形成,同时可以看到过量的Co掺杂除了单层MoS₂的形成,还获得了杂质相Co₃S₄,说明了适当的Co掺杂对获得纯单层MoS₂的重要性。图2b-h的Raman和XPS结果进一步证明了以上结果。图2i的TGA图可以看出,随着Co掺杂量的增加,碳含量逐渐增加,说明异辛酸钴中的碳链在高压气相的作用下更容易转化为碳材料,从而增加碳含量。

8ae4080c-d986-11ed-bfe3-dac502259ad0.png

图2. a XRD, b Raman, XPS 图谱:c Mo 3d, d S 2p, e Co 2p, f C 1s, g N 1s, h O 1s, 和i TGA。

III Co掺杂单层MoS₂电化学性能表征

从图3a即首次充放电曲线可以看出,合成的CoMoS₂/C-II(单层MoS₂)样品充放电容量最高达到1512.9 mAh g⁻¹ 。图3b循环曲线显示CoMoS₂/C-II在100次循环后仍然保持了较高的容量1504.3 mAh g⁻¹,几乎与首次充放电容量持平,其性能与MoS₂/C and CoMoS₂/C-I类似。说明CoMoS₂/C-II经多次循环后仍能保持其电极完整性且体积膨胀较小。纯的MoS₂循环性能最差,主要是由于缺乏单层结构和N,O掺杂的碳基体。从图3d看到CoMoS₂/C-II其电荷转移电阻最小,使其比其他样品具有较高的Li⁺传输速率,使其在20 A g⁻¹的电流密度下,容量高达1063.6 mAh/g(图3c)。此外,图3f-h分别为CoMoS₂/C-II样品在0.1A/g,1A/g和5A/g的循环稳定性曲线,可以看出,其具有非常好的循环稳定性。CoMoS₂/C-II无论在容量、倍率性能和稳定性方面都高于之前报道的MoS₂基负极材料(图3i)。

8aeffe50-d986-11ed-bfe3-dac502259ad0.png

图3. a 充放电曲线,b 循环曲线,c倍率曲线,d EIS曲线,e 单层MoS₂充放电曲线, f 单层MoS₂ 0.1 A/g循环曲线, g 单层MoS₂ 1 A/g循环曲线,h 单层MoS₂ 5 A/g循环曲线,i 性能对比。

IV Co掺杂单层MoS₂转化反应机制

图4a,b可以看到放电到0.01V时Co掺杂MoS₂的层状结构彻底消失,转化为了大量的晶体纳米颗粒,颗粒尺寸约为2nm,图4c的衍射结果可以看到,纳米颗粒为Co,Mo和Li₂S。图4d可以看到在放电到0.01V时,Mo3d的峰向低结合能的方向移动,228.3 eV代表了Mo纳米颗粒的形成,在充电到3V时,Mo3d峰进一步向低结合能方向移动,说明了在其表面空间电荷区的形成。图4e,可以看到在放电到0.01V时,Co2p的峰向低结合能的方向移动,777.8eV代表了Co纳米颗粒的形成,在充电到3V时,Co2p峰进一步向低结合能方向移动,说明了在其表面空间电荷区的形成。为了说明空间电荷区的形成,电极在不同充电状态的磁滞回线是被测试的(图4f)。从图4f可以看出,原始电极的磁化强度基本为0,而在首次放电到0.01V后,电极磁化强度迅速增加,主要是由于磁性Mo和Co纳米颗粒的形成,在充电到3V后,电极磁化强度进一步增加,说明Mo和Co表面形成了空间电荷区。

8b04332a-d986-11ed-bfe3-dac502259ad0.png

图4. a,b Co掺杂单层MoS₂电极放电到0.01V时TEM照片,c SAED,d Mo 3d的XPS谱,e Co 2p的XPS谱, f 电极在不同循环圈数电极的磁滞回线。

V Co掺杂单层MoS₂全电池性能

本文选择磷酸铁锂做正极,Co掺杂单层MoS₂材料为负极,组装全电池,在组装之前,Co掺杂单层MoS₂材料在半电池中先预循环三圈,以提高全电池首次库伦效率。从图5a,b可以看出,在0.1 C循环100圈后,容量高达164.4 mAh/g,容量保持率为95.1%。在1 C循环200圈后,容量仍高达133.9mAh/g,容量保持率90.2%(图5c)。此外,其表现了突出的快速充电能力,在4C时容量可达131.8mAh/g,保持0.1C所获得容量的80.2%(图5d,e),对应的能量密度为136.2Wh/kg,保持0.1C能量密度的76.6%(图5f)。在4C电流密度下,循环500圈,容量保持率高达80.2%,足以说明其具有快速充电能力的同时,还具备突出的稳定性(图5g)。组装的一个扣式电池可以点亮59个LED灯,且点亮时间可持续2小时,说明了其具有良好的应用前景。

8b14dcb6-d986-11ed-bfe3-dac502259ad0.png

图5:a 0.1 C充放电曲线,b 0.1 C循环曲线, c 1 C循环曲线, d,e 倍率性能, f充电时间和能量密度关系,g 4C循环性能,h LED灯驱动演示。

VI DFT模拟计算

为了说明Co掺杂对单层MoS₂锂离子扩散能垒和电子结构的影响,进行了DFT模拟。从图6a-c可以看到,Co掺杂后极大降低了单层MoS₂的锂离子扩散能垒,从图6d可以看出,Co掺杂后将单层MoS₂的带隙从1.3eV降低到了0eV,即Co掺杂后将单层MoS₂的半导体特性改为了金属性,可以极大促进电子的转移。图6e可以看到单层MoS₂具有各向同性的锂离子存储行为,而多层MoS₂具有各向异性的锂离子存储行为,锂离子需绕道到层间进行存储(图6f),这必将增加锂离子扩散能垒,正如图6g计算的那样,多层层间传输锂离子扩散能垒要高于单层。即本文获得的Co掺杂单层MoS₂与碳的复合材料具有开放性的锂离子存储行为(图6h),且转化反应形成了大量的Mo和Co纳米颗粒,在其表面可以建立强烈的空间电荷区,从而加速锂离子传输速率和增加锂离子存储数量(图6i),从而极大地增加倍率性能和容量。

8b1f939a-d986-11ed-bfe3-dac502259ad0.png

图6. a 纯单层MoS₂锂离子扩散模型,b Co掺杂单层MoS₂锂离子扩散模型,c 扩散能垒,d DOS结果,e Co掺杂单层MoS₂锂离子扩散示意图,f Co掺杂多层MoS₂锂离子扩散示意图,g 多层MoS₂锂离子扩散模型,h 插入反应过程中锂离子扩散路径,i 转化反应锂离子存储示意图。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3086

    浏览量

    76496
  • led灯
    +关注

    关注

    22

    文章

    1554

    浏览量

    107032
  • DFT
    DFT
    +关注

    关注

    2

    文章

    219

    浏览量

    22468

原文标题:南方科大赵天寿院士等:首次MoS₂层间原位构建静电排斥实现超快锂离子传输

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    聚合物锂离子电池的构成

    基本上稳定。因此,对于聚合物锂离子电池而言, “三分仪器七分养”,除了化成比较重要外,首次使用阶段也非常重要,必须让消费者对聚合物锂离子电池有一个清晰了解。事实上,许多消费者包括一些手机推销商,均对聚合物
    发表于 06-06 11:49

    锂离子电池的性能

    对于锂离子电池的性能知识了解,主要是从下面的六个方面来分析,达到对锂离子电池的一个初步掌握。1.锂离子电池的电化学原理 锂离子电池正极的主要成分为LiCoO2,负极的主要成分为C,充电
    发表于 06-13 13:36

    锂离子电池的基本组成及关键材料

    锂离子电池的基本组成及关键材料,锂离子电池是化学电源的一种。我们知道,化学电源在实现能量转换过程中,必须具备以下条件。① 组成电池的两个电极进行氧化还原反应的过程,必须分别在两个分开的区域进行,这有
    发表于 07-03 18:26

    锂离子电池的工作原理和使用注意事项

    就嵌入到碳的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳中的锂离子脱出,又运动回正极。回正极的
    发表于 10-29 17:43

    如何检测锂离子电池保护板中MOS管的好坏?

    如何检测锂离子电池保护板中MOS管的好坏?
    发表于 06-07 22:58

    有机化合物可作为锂离子电池正极材料

    的导电性和单体大的电荷排斥力引起的较慢的离子/电子传输速率,同时聚合物在充放电过程中的溶胀性及其本身的凝聚态结构也会对锂离子的扩散迁移速率
    发表于 11-17 17:12

    锂离子电池和锂电池的区别

    时发生上述反应的逆反应。  当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳的微孔中
    发表于 12-28 15:10

    锂离子电池的制造概述

    型号的电动汽车采用大约6800 个18650 锂离子电 池单元,重达450 kg。由于这个原因,电池生产需要制造速度更 、效率更高以及控制更精确以满足市场的价格需求。锂离子电池制造概述图1 显示
    发表于 02-27 17:16

    锂离子电池充放电设备的保护

    ,如《JBT11143-2011锂离子蓄电池充电设备接口和通讯协议》中所述,锂离子电池充放电设备的拓扑结构见图1.通常充放电系统会通过二级或三级分布式结构实现。各级控制系统之间通过通讯接口传输
    发表于 09-27 10:13

    锂离子动力电池隔膜浅谈

    实现充放电功能、倍率性能的微孔通道,实现锂离子的传导。在电池过充或者温度变化较大时,隔膜通过闭孔来阻隔电流传导来防止爆炸。因此锂离子动力电池中的主要功能包含
    发表于 10-10 15:23

    【转帖】锂电池电芯浆料的工艺和原理分析

    ,而且在这个过程中都伴随着温度、粘度、环境等变化。在正、负极浆料中,颗粒状活性物质的分散性和均匀性直接响到锂离子在电池两极的运动,因此在锂离子电池生产中各极片材料的浆料的混合分散至关重要,浆料分散质量
    发表于 12-13 13:38

    锂离子电池SEI膜的性能影响

    锂离子电池在电池首次从放电过程中,电极材料与电解液在固液相界面上发生反应,形成一覆盖于电极材料表面的钝化。这种钝化是一种界面层,具有固
    发表于 05-24 07:48

    锂离子电池简介

    对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳的微孔中,嵌入的
    发表于 11-03 16:11

    静电为什么能击穿MOS管?如何应对?

    方式:  一是电压型,即栅极的薄氧化发生击穿,形成针孔,使栅极和源极短路,或者使栅极和漏极短路;  二是功率型,即金属化薄膜铝条被熔断,造成栅极开路或者是源极开路。  静电的基本
    发表于 05-14 10:22

    万立骏&郭玉国:聚硫化物排斥原位固态化界面

    通过初始放电产物S与聚合物液体正极添加剂PHDI的原位化学反应,制备了一种LiPS排斥固化CEI。新型CEI通过静电斥力有效抑制LiPS溶解和穿梭。界面在微米尺度上相互连接形成三维多孔结构,使得
    的头像 发表于 01-16 10:53 475次阅读