0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

压电致动器适用于基于原子力显微镜AFM的纳米切割

杨明远 来源:杨明远 作者:杨明远 2023-03-29 16:24 次阅读

依赖于使用原子力显微镜(AFM)进行纳米切割技术的控制原理,可用于制造具有几微米数量级的恒定切割深度的凹槽。线性位移传感器、反馈控制系统和压电致动器一起运行,可以在加工过程中保持恒定的法向切削力。

微纹理、微结构或工程化的表面在各种工业领域(如电子、能源、光学机械、摩擦学和生物学)中得到广泛应用,例如在光学透镜、液晶显示(LCD)面板的棱镜片、设计用于产生“莲花效应”以排斥水的纹理表面、热交换器等。机械部件上的微结构通常使用光刻和蚀刻技术制造,但这些工艺需要复杂和昂贵的设备、对材料的限制、几何限制以及使用危险化学品等。用于抑制表面反射而具有蛾眼结构等特征的元件的制造更加复杂,特别是在非平面上制造时。

蛾眼结构by David Scharf 1977, 2005

模压和压印是生产这种微纹理表面的好方法,然而模具的精度是最重要的因素之一,因为它代表了模压产品的质量。使用金刚石工具进行精密加工已越来越多地用于制造高级工业应用的高精度机加工零件。

使用金刚石工具的技术来制造微结构和微槽可用于平面加工,它需要利用压电快速刀具定位台的超高精度运动机构和复杂的控制系统以获得所需的纳米/微米级精度。这种切削机构通过其进给机制设置切割深度,所生产零件的精度直接取决于压电快速刀具定位台的精度。

压电快速刀具定位台是一种高精度、高速、高刚度、高可靠性的刀具定位设备,主要应用于高精度切削、精密加工、半导体制造、精密电子、光电子、精密仪器等领域。它采用压电陶瓷驱动原理,通过快速变形实现高精度的刀具定位。它的控制系统则控制压电驱动机构的电源信号,实现对刀具位置的精确控制。使用压电快速刀具定位台能够提高工作效率和产品质量,减少人工操作的误差,是现代高科技制造及实验室的重要设备之一。

poYBAGQj9c-AfOshAABaOlyJte4153.jpg

芯明天P92压电刀具定位台及E01压电控制器

型号 P92.X20S/K 单位
行程 18@95Hz(150V) μm
9@190Hz
1@600Hz
传感器 SGS/-
分辨率 0.5/0.2 nm
线性度 0.1 %F.S.
重复定位精度 15 nm
负载 300 g
刚度 120 N/μm
空载谐振频率 4000 Hz

除以上利用压电快速刀具定位台的微进给外,也可采用另一种实施恒定力切削的方法,该方法可控制施加到刀具上的法向切削力,使其保持切削力恒定。例如使用原子力显微镜(AFM)机制的纳米切割。但是由于所使用的压电扫描器的行程有限且悬臂刚度低,因此无法应用该工艺用于实际切割。

pYYBAGQj9dCAQCd2AACdo636PK8964.jpg

恒定负载切削效果

但在AFM纳米切割技术的基础上,结合金刚石工具,可形成一种用于微尺度加工和大切割面积的切割系统。与AFM类似,该系统也具有悬臂梁结构,在该结构上安装金刚石刀具。该系统也同样利用光学方法,测量悬臂梁的扭转及弯曲,从而估算切削力。该系统的特点是它能够在具有倾斜和弯曲表面的表面上制造具有恒定切削深度的凹槽。

下方图中显示的为一种AFM与金刚石相结合的微切削系统。该系统集成了非接触式电容传感器与PZT压电致动器,这两者间配合以保持恒定的法向切削力。

pYYBAGQj9dGAf9IHAADomsSrPTQ616.jpg

悬壁梁与电容式传感器都安装在与压电致动器相连的线性导轨上,电容传感器可检测悬臂梁的变形位移,压电致动器可在Z向上进行纳米级精密的位置调节。该系统能够补偿运动系统的部分几何误差,例如轴未对准或工具路径中的误差。

poYBAGQj9dGAXRaUAABdL_2naT8014.jpg

芯明天电容式传感器

芯明天电容传感器的基本技术参数如下:

型号 E09.
CAP100
E09.
CAP200
E09.
CAP500
量程 0~100μm 0~200μm 0~500μm
静态分辨率 1.25nm 2.5nm 5nm
带宽-3dB 2kHz 2kHz 2kHz
线性度 0.05% 0.05% 0.05%
重复度 0.0025% 0.0025% 0.0025%

为了控制切割法向力,悬臂自由边缘的变形由电容传感器测量。反馈控制系统补偿悬臂梁的任何变形,它的主要任务是保持传感器和测量板之间的相对位置恒定。通过控制PZT压电致动器在切割过程中的膨胀或收缩,与悬臂相互作用。闭环系统包括一个函数发生器、电压放大器(控制压电致动器)、压电致动器、电容式传感器、控制器(比例积分PI)。

pYYBAGQj9dKAZF0JAACmUkn7Kus569.jpg

芯明天压电致动器

芯明天压电致动器具有多种型号,外径由9mm至45mm可选,位移由7μm至260μm可选,出力可达上万牛顿,且可根据要求进行产品定制。

压电陶瓷促动器参数举例:

型号 行程 推/拉力
PSt150/10/100VS15 95μm 2300/250N
PSt150/14/120VS20 114μm 4700/700N
PSt150/20/140VS25 133μm 7300/1000N
PSt150/20/200VS25 190μm 7300/1000N
PSt1000/10/150VS18 150μm 4000/700N
PSt1000/16/60VS25 60μm 12000/1500N
PSt1000/25/40VS35 40μm 25000/4000N
PSt1000/35/20VS45 20μm 50000/6000N

poYBAGQj9dOAZ1TXAAFSsGh7S2g957.jpg

芯明天压电放大器

芯明天压电放大器具有多种选项,可选模拟或数字控制,可选键盘操作、软件操作,可选板卡式、机箱式等。它具有小体积型,也有大功率型,可满足不同应用的需求。

常见的AFM系统使用压电扫描管,它不仅可以补偿悬臂变形,还可以在尖端和待扫描表面之间进行相对X-Y运动。然而压电扫描管的最大测量面积在数百平方微米的数量级,这不能满足较大加工面积要求。

芯明天压电扫描管

芯明天压电扫描管的基本参数如下:

型号
(mm)
外径
(mm)
扫描范围
(μm)
Z轴位移
(μm)
1005 10 5 3.8 2.1
2005 20 5 15 4.2
3507 35 7 39 7.4
5009 50.8 9.5 52 10
5509 55 9 66 12
6006 60 6 114 12

为解决加工面积小的问题,将该切割系统安装在三轴精密机床上,对该系统可进行三轴的运动调节,从而扩大测量面积,可以在几平方厘米量级的表面上制造微槽。

poYBAGQj9dSAAJ7XAAB6i0JXN58079.jpg

芯明天三轴压电马达运动平台

芯明天三轴压电马达运动平台参数举例:

0.5kg负载、20.8℃温度、31%湿度条件下。

项目 X向 Y向 Z向
行程 ±25mm ±25mm ±50mm
线性度 0.526μm 0.942μm 1.377μm
重复度 0.645μm 0.611μm 0.681μm
分辨率 40nm 40nm 40nm
运行速度 4.186
mm/s
4.185
mm/s
4.577
mm/s

审核编辑黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2526

    文章

    48117

    浏览量

    740153
  • 显微镜
    +关注

    关注

    0

    文章

    461

    浏览量

    22590
  • 压电致动器
    +关注

    关注

    1

    文章

    10

    浏览量

    7885
  • AFM
    AFM
    +关注

    关注

    0

    文章

    58

    浏览量

    20094
收藏 人收藏

    评论

    相关推荐

    显微测量|共聚焦显微镜大倾角超清纳米三维显微成像

    共聚焦显微镜在材料学领域应用广泛,通过超高分辨率的三维显微成像测量,可清晰观察材料的表面形貌、表层结构和纳米尺度的缺陷,有助于理解材料的微观特性和材料工程设计。
    的头像 发表于 02-18 10:53 262次阅读
    <b class='flag-5'>显微</b>测量|共聚焦<b class='flag-5'>显微镜</b>大倾角超清<b class='flag-5'>纳米</b>三维<b class='flag-5'>显微</b>成像

    共聚焦显微镜应用特点

    共聚焦显微镜具有高分辨率和高灵敏度的特点,适用于多种不同样品的成像和分析,能够产生结果和图像清晰,易于分析。这些特性使共聚焦显微镜成为现代科学研究中的重要工具,同时为人们解析微观世界提供了一种强大
    发表于 11-21 09:21 0次下载

    一文了解电子显微镜和光学显微镜的差异

    如今,不仅有能放大几千倍的光学显微镜,也有能放大几十万倍的电子显微镜,让我们对生物体的生命活动规律有了更深入的了解。普通中学生物教学大纲中规定的实验绝大部分都是利用显微镜来完成的,因此显微镜
    的头像 发表于 11-07 15:23 903次阅读

    高压放大器在扫描显微镜中的应用及优势是什么

    。下面安泰电子Aigtek将详细介绍高压放大器在扫描显微镜中的应用及其优势。 图:ATA-7000系列高压放大器 一、高压放大器的应用领域: 原子显微镜:高压放大器在原子
    的头像 发表于 10-24 18:00 417次阅读
    高压放大器在扫描<b class='flag-5'>显微镜</b>中的应用及优势是什么

    纳米级测量仪器:窥探微观世界的利器

    ,还有一些其他的纳米级测量仪器也日益成为研究的热点,例如激光干涉仪。这些测量工具各有特点,可用于不同的纳米级尺寸测量需求。 纳米级测量仪器在纳米
    发表于 10-11 14:37

    红外被动近场显微镜的实验原理及其应用

    本文将围绕扫描噪声显微镜(SNoiM)技术的实验原理及其应用,详细介绍如何通过自主研制的红外被动近场显微镜,突破红外热成像的衍射极限限制,实现纳米级红外温度成像。
    发表于 09-22 10:16 351次阅读
    红外被动近场<b class='flag-5'>显微镜</b>的实验原理及其应用

    显微镜下锡膏回温时候的视频

    锡膏显微镜
    jf_17722107
    发布于 :2023年09月21日 13:49:39

    原子显微镜

    电路元器件电容晶体管电子技术电子diy
    学习电子知识
    发布于 :2023年08月30日 23:09:32

    为什么激光共聚焦显微镜成像质量更好?

    高灵敏度的探测在低光强条件下也能够获得清晰的图像。 VT6000激光共聚焦显微镜基于针孔点光源的共轭共焦原理,具有纳米级别的纵向分辨能力,配合高速扫描模块,专业的分析软件具有多区域、自动测量功能,能实现
    发表于 08-22 15:19

    结构深、角度大、反射差?用共聚焦显微镜就对啦!

    和共聚焦3D显微形貌检测技术,广泛应用于涉足超精密加工领域的三维形貌检测与表面质量检测方案。其中,VT6000系列共聚焦显微镜,在结构复杂且反射率低的表面3D微观形貌重构与检测方面具有不俗的表现。 一
    发表于 08-04 16:12

    #硬声创作季 显微镜下看看华为和苹果屏幕的区别

    显微镜
    jf_27932003
    发布于 :2023年07月22日 17:08:52

    AMEYA360分析蔡司用于亚10纳米级应用的离子束显微镜

    蔡司用于亚10纳米级应用的离子束显微镜ORION NanoFab,集 3 种聚焦离子束于一身的显微镜,可以实现亚 10 nm 结构的超高精度加工快速、精准的亚 10
    的头像 发表于 07-19 15:45 273次阅读
    AMEYA360分析蔡司<b class='flag-5'>用于</b>亚10<b class='flag-5'>纳米</b>级应用的离子束<b class='flag-5'>显微镜</b>

    【应用案例】扫描隧道显微镜STM

    比它的同类原子显微镜更加高的分辨率。此外,扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又
    的头像 发表于 07-04 13:12 1321次阅读
    【应用案例】扫描隧道<b class='flag-5'>显微镜</b>STM

    Park Systems不断创新原子显微镜技术 助力中国半导体行业发展——记Park Systems上海实验室乔迁开幕式

    来源: Park 原子显微镜(atomic force microscope, AFM)是一种通过探针与被测样品之间的相互作用力来获得物质表面形貌信息的纳米级高分辨率的扫描探针
    的头像 发表于 06-06 16:50 1510次阅读
    Park Systems不断创新<b class='flag-5'>原子</b>力<b class='flag-5'>显微镜</b>技术 助力中国半导体行业发展——记Park Systems上海实验室乔迁开幕式

    共聚焦显微镜测量晶圆激光切割槽三维轮廓

    半导体大规模生产过程中需要在晶圆上沉积集成电路芯片,然后再分割成各个单元,最后再进行封装和焊接,因此对晶圆切割槽尺寸进行精准控制和测量,是生产工艺中至关重要的环节。VT6000系列共聚焦显微镜用于
    发表于 05-09 14:08 0次下载