0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

运动目标检测算法简介及其应用

3D视觉工坊 来源:空中机器人前沿 2023-03-29 09:29 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

运动目标检测的主要目的是从图片序列中将变化区域或者运动物体从背景图像中分离出来,常用于视频监控、异常检测、三维重建、实时定位与建图等领域。运动目标检测是许多领域应用落地的基础,近年来被广泛地关注和研究,对运动无人机检测亦是如此。目前,运动目标检测的基本方法主要包括背景消减法、帧间差分法和光流法。

背景减法

背景消减法是运动目标检测的经典方法,也是目前的主流方法之一。其算法的核心在于将图片序列中的当前帧与确定好的或者实时更新的背景参考模型进行减法操作,找到不同的区域。它把与背景图像差异超过一定阈值的区域作为运动区域,把小于阈值的部分作为背景区域,从而确定运动目标。背景消减法中背景图像会受到外部光线变化、其他外部环境变化、相机运动等因素的影响,所以背景消减法成功的关键在于背景建模以及背景更新。

9b69b0ca-cdbd-11ed-bfe3-dac502259ad0.png

图1. 背景消减法流程 传统的背景建模方法主要包括中值法、均值法、单高斯分布模型、混合高斯模型等等。自适应混合高斯背景建模是图像背景建模的重要方法,它的工作原理是基于视频图像中像素点在时间域上的分布来得到像素点上的颜色分布,从而到达背景建模的目的。

混合高斯背景建模法不仅对复杂场景的适应强,而且能通过自动计算的模型参数来对背景模型调整,检测速度很快,且检测准确。同时算法能够根据新获取的图像,对背景图像参数进行自适应更新。该方法能够可靠处理光照变化、背景混乱运动的干扰以及长时间的场景变化等,因此基于混合高斯模型建模的背景减法被广泛应用于运动目标检测中。


▌帧间差分法

帧间差分法的核心是对时间上连续的两帧、三帧或者多帧图像进行差分运算来获取运动区域。首先求得相邻帧之间的像素值(通常使用灰度值)之差,然后类似于背景消减法设定参考阈值,逐个对像素点进行二值化处理。其中灰度值为255的是前景,灰度值为0的是背景。

最后通过连通域分析,形态学操作等获取完整的运动目标图像。两帧差分法适用于目标运动较为缓慢的场景,当运动较快时,由于目标在相邻帧图像上的位置相差较大,两帧图像相减后并不能得到完整的运动目标,因此,人们在两帧差分法的基础上提出了三帧差分法、五帧差分法等来改善目标包络框。

9b7f4854-cdbd-11ed-bfe3-dac502259ad0.png

图2. 帧间差分法流程图 由于帧间差分法是选用前一帧的图片作为背景,所以这使得它不仅仅具有实时性高的特点,相比于背景建模的方法更是在更新速度、算法复杂程度以及计算量方面都要有所优化。但是帧差法极容易受到噪声的干扰,对阈值的选择要求很高。阈值选择过低会导致检测结果总包含大量的噪声干扰,阈值选择过高则可能忽视图像中的关键信息,导致缓慢运动的目标被忽略或者目标提取不完整等问题。

▌光流法

光流法与上述两种方法不同,不需要对场景中的背景图像进行建模,而是利用图像序列中像素在时间域上的变化以及相邻帧图像中每个像素之间的相关性,计算得到光流场,进而提取出运动目标。根据所形成的光流场中二维矢量的稠密程度,光流法可以分为稠密光流和稀疏光流。其中,稠密光流计算图像上所有点的偏移量,得到稠密的光流场,可进行像素级别图像配准,但是计算量大、实时性差。

稀疏光流只对于有明显特征的点(如角点)进行跟踪,但是计算量小,实时性好。 如下视频为基于Lucas Kanade稀疏光流法的运动无人机跟踪。

在移动摄像头场景下普遍存在背景干扰噪声增多,小尺寸运动目标难以检测,计算复杂度高等缺点,难以直接应用到运动像头检测运动无人机等复杂场景中,需要进一步改进和研究。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 摄像头
    +关注

    关注

    61

    文章

    5058

    浏览量

    102415
  • 无人机
    +关注

    关注

    234

    文章

    11137

    浏览量

    193207

原文标题:视觉感知|运动目标检测算法简介及其应用

文章出处:【微信号:3D视觉工坊,微信公众号:3D视觉工坊】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    RISC-V 算法原理及串口通信

    阈值时,即可判断为运动目标,从而实现目标检测功能。 将算法硬化的主要流程图如下: 软件
    发表于 10-28 06:16

    机器视觉助力FPD 面板检测

    FPD面板光学检测,需要在工业相机上使用图像识别和检测算法检测缺陷和异常。
    的头像 发表于 09-26 16:09 441次阅读
    机器视觉助力FPD 面板<b class='flag-5'>检测</b>

    有哪些常见的AI算法可以用于装置数据的异常检测

    在装置数据(如工业设备传感器数据、电子装置运行参数、化工装置工况数据等)的异常检测中,AI 算法的选择需结合数据特点(如 时序性、维度、标注情况 )、检测目标(如实时性、精度、可解释性
    的头像 发表于 09-18 09:27 409次阅读
    有哪些常见的AI<b class='flag-5'>算法</b>可以用于装置数据的异常<b class='flag-5'>检测</b>?

    基于FPGA的SSD目标检测算法设计

    随着人工智能的发展,神经网络正被逐步应用于智能安防、自动驾驶、医疗等各行各业。目标识别作为人工智能的一项重要应用也拥有着巨大的前景,随着深度学习的普及和框架的成熟,卷积神经网络模型的识别精度越来越高
    的头像 发表于 07-10 11:12 2212次阅读
    基于FPGA的SSD<b class='flag-5'>目标</b><b class='flag-5'>检测算法</b>设计

    气密性检测仪的核心应用范畴及其所针对的检测目标

    在工业生产与质量控制领域,气密性检测仪是保障产品品质与性能的关键设备。以下将围绕气密性检测仪的核心应用范畴及其所针对的检测目标展开介绍,以下
    的头像 发表于 06-27 15:03 422次阅读
    气密性<b class='flag-5'>检测</b>仪的核心应用范畴<b class='flag-5'>及其</b>所针对的<b class='flag-5'>检测</b><b class='flag-5'>目标</b>

    基于LockAI视觉识别模块:C++目标检测

    检测是计算机视觉领域中的一个关键任务,它不仅需要识别图像中存在哪些对象,还需要定位这些对象的位置。具体来说,目标检测算法会输出每个检测到的对象的边界框(Bounding Box)以
    发表于 06-06 14:43

    基于RK3576开发板的车辆检测算法

    车辆检测是一种基于深度学习的对人进行检测定位的目标检测,能广泛的用于园区管理、交通分析等多种场景,是违停识别、堵车识别、车流统计等多种算法
    的头像 发表于 05-08 17:34 1267次阅读
    基于RK3576开发板的车辆<b class='flag-5'>检测算法</b>

    基于RK3576开发板的安全帽检测算法

    安全帽佩戴检测是工地、生产安全、安防的重中之重,但人为主观检测的方式时效性差且不能全程监控。AI技术的日渐成熟催生了安全帽佩戴检测方案,成为了监督佩戴安全帽的利器。本安全帽检测算法是一
    的头像 发表于 05-08 16:59 1863次阅读
    基于RK3576开发板的安全帽<b class='flag-5'>检测算法</b>

    基于RK3576开发板的人员检测算法

    展示了RK3576开发板的人员检测算法例程及API说明
    的头像 发表于 05-07 17:33 644次阅读
    基于RK3576开发板的人员<b class='flag-5'>检测算法</b>

    基于RV1126开发板的车辆检测算法开发

    车辆检测是一种基于深度学习的对人进行检测定位的目标检测,能广泛的用于园区管理、交通分析等多种场景,是违停识别、堵车识别、车流统计等多种算法
    的头像 发表于 04-14 16:00 606次阅读
    基于RV1126开发板的车辆<b class='flag-5'>检测算法</b>开发

    基于RV1126开发板的安全帽检测算法开发

    安全帽佩戴检测是工地、生产安全、安防的重中之重,但人为主观检测的方式时效性差且不能全程监控。AI技术的日渐成熟催生了安全帽佩戴检测方案,成为了监督佩戴安全帽的利器。本安全帽检测算法是一
    的头像 发表于 04-14 15:10 654次阅读
    基于RV1126开发板的安全帽<b class='flag-5'>检测算法</b>开发

    基于RV1126开发板的人脸检测算法开发

    在RV1126上开发人脸检测算法组件
    的头像 发表于 04-14 10:19 732次阅读
    基于RV1126开发板的人脸<b class='flag-5'>检测算法</b>开发

    轩辕智驾红外目标检测算法在汽车领域的应用

    在 AI 技术蓬勃发展的当下,目标检测算法取得了重大突破,其中红外目标检测算法更是在汽车行业掀起了波澜壮阔的变革,从根本上重塑着汽车的安全性能、驾驶体验与产业生态。
    的头像 发表于 03-27 15:55 733次阅读

    睿创微纳推出新一代目标检测算法

    随着AI技术的发展,目标检测算法也迎来重大突破。睿创微纳作为热成像领军者,凭借深厚的技术积累与创新能力,结合AI技术推出新一代目标检测算法,以三大核心技术带来AI视觉感知全场景解决方案
    的头像 发表于 03-20 13:49 797次阅读

    采用华为云 Flexus 云服务器 X 实例部署 YOLOv3 算法完成目标检测

    一、前言 1.1 开发需求 这篇文章讲解: 采用华为云最新推出的 Flexus 云服务器 X 实例部署 YOLOv3 算法,完成图像分析、目标检测。 随着计算机视觉技术的飞速发展,深度学习模型如
    的头像 发表于 01-02 12:00 1019次阅读
    采用华为云 Flexus 云服务器 X 实例部署 YOLOv3 <b class='flag-5'>算法</b>完成<b class='flag-5'>目标</b><b class='flag-5'>检测</b>