0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

FPGA学习-基于FPGA的图像处理

FPGA设计论坛 来源:未知 2023-02-15 16:35 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群


图像处理系统设计注意点:
1.将算法开发和FPGA实现分离
用软件的图像处理环境可以使用大批量的图像样本进行测试及调试算法,再将算法映射到硬件上,这样大大节省了硬件调试周期。
2.算法的精度
图像处理的算法中,大部分需要采用浮点数运算,而浮点数运算再FPGA中是非常不划算的,因此需要转换成定点数计算,此时会设计到浮点运算转定点运算时精度下降的问题。
3.软件和硬件的合理划分
这里的软件是指DSP,CPU,硬件是指FPGA;一般结构规则计算量大的操作如sobel算子均值滤波可以采用硬件进行,不规则的动态可变长度循环的底层算法由软件进行;

图像处理FPGA 设计基本方法:
1.阵列结构结合流水线处理设计
例如RGB图像,包括三组数据,处理时需要并行三通道后,每个通道进行分别的串行流水处理。
2.缓存设计
帧缓存行缓存列对齐
3.资源
分辨率处理窗口对资源影响成倍增加
基于FPGA设计框架举例:
1、灰度直方图统计
直方图是图像的灰度分布统计的一种表示方法,统计目标图像中各个灰度点的像素个数,很多对于图像的调整算法都是基于此进行的;
如何基于FPGA进行统计呢?
1)由于是统计图像的直方图,所以一定是统计结果会在图像经过之后才能产生,因此需要进行缓存;
缓存一:统计后的结果;
缓存二:经过统计处理器的图像数据,以便后面和直方图做同步处理。
2)图像常常用8位、24位、32位来表示一个像素的灰度值,
因此,统计种类分别为2^8=256/2^24=16777216/2^32=4294967296,地址位宽根据此进行选择设定;
根据不同的精度选择不同的缓存方式:片内或片外缓存;
3)处理流程:
首先根据当前来的灰度值做为读RAM地址,读出RAM中对应灰度值的的统计值;
第二将读出结果加一并回写回RAM的当前地址中;
第三重复操作至当前图像处理结束;
第四下一幅图像到来之前顺序按灰度值从0到最大的顺序将最终结果读出;
第五读出最终结果后,将RAM清空。
4)处理细节
定义参数图像高度IH 图像宽度IW像素逐行输入
因此以行同步脉冲的上升沿作为统计开始,行同步脉冲作为行统计计数器
行统计计数器达到最大高度时,作为统计结束标志。
2.灰度直方图均衡化处理
1.统计出直方图,获取各个像素灰度累加和
2.乘以均衡系数:(2^DW-1)/IW*IH(像素最大值/图像的面积)
3.直方图线性拉伸处理
此节暂时略过;
4.线性滤波器
首先需要区分线性和非线性滤波器的区别,区别在于其输出与输入之间是否有唯一且确定的函数传递。
线性滤波器分类:
平滑滤波器:主要包括均值滤波器和高斯滤波器等
锐化滤波器:主要包括SOBEL算子 LAPLAS算子梯度运算等
滤波器的物理意义主要是响应信号对目标信号响应后的样子,也就是响应函数g(i,j)滑过整个图像,即对图像做一个卷积处理,就得到了滤波结果。
1)均值滤波器概述
用一个图像区域的各个像素的平均值来代替原图像的各个像素值,主要作用是减小锐度,减小噪声。
均值滤波一般出现在图像处理的预处理步骤,
预处理后,根据噪声来源,例如针对椒盐噪声做中值滤波处理,针对高斯噪声做高斯滤波处理
后续可能继续做边缘提取等复杂操作处理。
2)均值滤波器设计
设计一个滤波器可以理解成设计一个响应函数g(x,y)=Σi=-rrΣj=-rrI(x+i,y+j)) / (2r+1)2
数学公式很好理解,就是求一个窗口的所有像素灰度值之后后再除以整个窗口的面积也就是像素点个数,求出平均值;
均值滤波的方法将数据存储成3x3的矩阵,然后求这个矩阵。在图像上对目标像素给一个模板,
该模板包括了其周围的临近像素(以目标象素为中心的周围 8 个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。
(参考:http://www.cnblogs.com/ninghechuan/p/6789399.html)
(参考:http://www.cnblogs.com/aslmer/p/5779079.html#undefined)
shift_ram 进行数据矩阵化,将3x3矩阵的中心像素的周围八个点求和,采取了流水线的设计方法,来增加吞吐量,然后再求平均值代替目标像素的值。

 1 //矩阵元素移位赋值
2 always @(posedge clk or negedge rst_n)begin
3 if(rst_n==1'b0)begin
4 {p_11,p_12,p_13} <= {5'b0,5'b0,5'b0} ;
5 {p_21,p_22,p_23} <= {15'b0,15'b0,15'b0};
6 {p_31,p_32,p_33} <= {15'b0,15'b0,15'b0};
7 end
8 else begin
9 if(per_href_ff0==1&&flag_do==1)begin
10 {p_11,p_12,p_13}<={p_12,p_13,row_1};
11 {p_21,p_22,p_23}<={p_22,p_23,row_2};
12 {p_31,p_32,p_33}<={p_32,p_33,row_3};
13 end
14 else begin
15 {p_11,p_12,p_13}<={5'b0,5'b0,5'b0};
16 {p_21,p_22,p_23}<={5'b0,5'b0,5'b0}
17 {p_31,p_32,p_33}<={5'b0,5'b0,5'b0}
18 end
19 end
20 end
21
22
23 always @(posedge clk or negedge rst_n)begin
24 if(rst_n==1'b0)begin
25 mean_value_add1<=0;
26 mean_value_add2<=0;
27 mean_value_add3<=0;
28 end
29 else if(per_href_ff1)begin
30 mean_value_add1<=p_11+p_12+p_13;
31 mean_value_add2<=p_21+ 0 +p_23;
32 mean_value_add3<=p_31+p_32+p_33;
33 end
34 end
35
36 wire [8:0]mean_value;//8位数之和
37 wire [5:0]fin_y_data; //平均数,除以8,相当于左移三位。
38
39 assign mean_value=mean_value_add1+mean_value_add2+mean_value_add3;
40 assign fin_y_data=mean_value[8:3];
View Code
3)sobel算子
| -1 0 +1 |
Gx= | -2 0 +2 |
| -1 0 +1 |

| -1 -2 -1 |
Gy= | 0 0 0 |
| +1 +2 +1 |
包括X和Y两个方向的两套3X3矩阵,使其分别和图像的X和Y方向进行卷积计算(矩阵的卷积计算即将所有元素做乘加计算)
两个方向的卷积结果求平方根计算;
计算结果如果大于阈值则等于0xffff,如果小于阈值则等于0;
最终输出则是图像的边缘。
参考代码如下:由于算子简单以及有正负区分,因此需要做正值和负值分别计算后再进行相减计算。

// | -1 0 +1 |
//Gx= | -2 0 +2 |
// | -1 0 +1 |
//

// | -1 -2 -1 |
//Gy= | 0 0 0 |
// | +1 +2 +1 |


reg [
8:0] p_x_data ,p_y_data ; // x 和 y 的正值之和
reg [8:0] n_x_data ,n_y_data ; // x 和 y 的负值之和
reg [8:0] gx_data ,gy_data ; //最终结果

always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
p_x_data <=0;
n_x_data
<=0;
gx_data
<=0;
end
else if(per_href_ff1==1) begin
p_x_data
<= p_13 + (p_23<<1) + p_33 ;
n_x_data
<= p_11 + (p_12<<1 )+ p_13 ;
gx_data
<= (p_x_data >=n_x_data)? p_x_data - n_x_data : n_x_data - p_x_data ;
end
else begin
p_x_data
<=0;
n_x_data
<=0;
gx_data
<=0;
end
end

always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
p_y_data <=0;
n_y_data
<=0;
gy_data
<=0;
end
else if(per_href_ff1==1) begin
p_y_data
<= p_11 + (p_12<<1) + p_13 ;
n_y_data
<= p_31 + (p_32<<1) + p_33 ;
gy_data
<= (p_y_data >=n_y_data)? p_y_data - n_y_data : n_y_data - p_y_data ;
end
else begin
p_y_data
<=0;
n_y_data
<=0;
gy_data
<=0;
end
end

//求平方和,调用ip核开平方
reg [16:0] gxy; // Gx 与 Gy 的平方和
always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
gxy<=0;
end
else begin
gxy
<= gy_data* gy_data + gx_data* gx_data ;
end
end

wire [
8:0] squart_out ;
altsquart u1_altsquart (
//例化开平方的ip核
.radical (gxy),
.q (squart_out),
//输出的结果
.remainder()
);

//与阈值进行比较
reg [15:0] post_y_data_r;
always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
post_y_data_r<=16'h00;
end
else if(squart_out>=threshold)
post_y_data_r
<=16'h00 ;
else
post_y_data_r
<=16'hffff ;

end
View Code
5.非线性滤波器
非线性滤波器通常下是没有特定的转移函数,统计排序滤波器;

中值滤波

将 3*3 滑动块中的灰度值进行排序,然后用排序的中间值取代 3*3 滑块中心的值。示意图如下图所示。
第一步:将每一行按最大值、中间值、最小值排列
第二步:提取出最大值的最小值,中间值的中间值,最小值的最大值
第三步:将第二步提取出来的三个数进行排序,中间值即我们要求的中间值。
6.图像分割
图像分割是将图像划分成若干个互不相交的小区域的过程,将图像中有意义的特征或应用所需要的特征信息提取出来,最终结果是分割成一些具有
某种特征的单元,称为图像的基元。






精彩推荐



至芯科技12年不忘初心、再度起航2月11日北京中心FPGA工程师就业班开课、线上线下多维教学、欢迎咨询!
FPGA学习-USB 3.0协议理解
ARM+FPGA的高速同步数据采集
扫码加微信邀请您加入FPGA学习交流群




欢迎加入至芯科技FPGA微信学习交流群,这里有一群优秀的FPGA工程师、学生、老师、这里FPGA技术交流学习氛围浓厚、相互分享、相互帮助、叫上小伙伴一起加入吧!


点个在看你最好看





原文标题:FPGA学习-基于FPGA的图像处理

文章出处:【微信公众号:FPGA设计论坛】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1655

    文章

    22282

    浏览量

    630094

原文标题:FPGA学习-基于FPGA的图像处理

文章出处:【微信号:gh_9d70b445f494,微信公众号:FPGA设计论坛】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    FPGA+DSP/ARM架构开发与应用

    自中高端FPGA技术成熟以来,FPGA+DSP/ARM架构的硬件设计在众多工业领域得到广泛应用。例如无线通信、图像处理、工业控制、仪器测量等。
    的头像 发表于 10-15 10:39 3644次阅读
    <b class='flag-5'>FPGA</b>+DSP/ARM架构开发与应用

    光纤图像处理卡设计原理图:520-基于ZU15EG 适配AWR2243的雷达验证底板 XCZU15EG架构高速信号处理

    高速信号处理, FPGA光纤, 光纤图像处理, XCZU15EG架构
    的头像 发表于 08-28 10:39 397次阅读
    光纤<b class='flag-5'>图像</b><b class='flag-5'>处理</b>卡设计原理图:520-基于ZU15EG 适配AWR2243的雷达验证底板 XCZU15EG架构高速信号<b class='flag-5'>处理</b>板

    友思特方案 | FPGA 加持,友思特图像采集卡高速预处理助力视觉系统运行提速增效

    图像处理图像处理关键中间环节,通过优化传感器到主机的数据传输处理为后续减负。其算法依托硬件执行,搭载 
    的头像 发表于 08-20 09:18 594次阅读
    友思特方案 | <b class='flag-5'>FPGA</b> 加持,友思特<b class='flag-5'>图像</b>采集卡高速预<b class='flag-5'>处理</b>助力视觉系统运行提速增效

    FPGA 加持,友思特图像采集卡高速预处理助力视觉系统运行提速增效

    图像处理图像处理关键环节,可优化数据传输、减轻主机负担,其算法可在FPGA等硬件上执行。友思特FPG
    的头像 发表于 08-13 17:41 770次阅读
    <b class='flag-5'>FPGA</b> 加持,友思特<b class='flag-5'>图像</b>采集卡高速预<b class='flag-5'>处理</b>助力视觉系统运行提速增效

    FPGA在机器学习中的具体应用

    随着机器学习和人工智能技术的迅猛发展,传统的中央处理单元(CPU)和图形处理单元(GPU)已经无法满足高效处理大规模数据和复杂模型的需求。FPGA
    的头像 发表于 07-16 15:34 2623次阅读

    FPGA新品】正点原子L22开发板来了!采用紫光的Logos系列FPGA,适合工业控制、图像处理、高速通信等领域!

    FPGA新品】正点原子L22开发板来了!采用紫光的Logos系列FPGA,适合工业控制、图像处理、高速通信等领域! ATK-L22开发板采用紫光的Logos系列
    发表于 04-21 17:28

    进群免费领FPGA学习资料!数字信号处理、傅里叶变换与FPGA开发等

    进群免费领FPGA学习资料啦!小编整理了数字信号处理、傅里叶变换与FPGA开发等FPGA必看资料,需要的小伙伴可以加小助手(微信:elecf
    发表于 04-07 16:41

    【国产FPGA入学必备】国产FPGA权威设计指南+配套FPGA图像视频教程

    缩短工程项目的开发周期,同时,本书可以帮助高校师生快速学习国产FPGA,为参加FPGA和集成电路竞赛提供有力的帮助。 二、紫光同创FPGA图像
    发表于 02-20 15:08

    【国产FPGA必备教程】——紫光同创FPGA图像视频教程,适用于小眼睛FPGA盘古全系列开发板

    本帖最后由 jf_25420317 于 2025-2-19 18:15 编辑 小眼睛科技针对赛事推出配套视频教程,涵盖紫光同创工具的使用方法、基于紫光同创FPGA图像处理技巧、高速通信
    发表于 02-19 15:44

    基于FPGA图像边缘检测设计

    今天给大侠带来基于 FPGA图像边缘检测设计,话不多说,上货。 设计流程如下:mif文件的制作→ 调用 ip 核生成rom以及仿真注意问题→ 灰度处理→ 均值滤波:重点是3*3 像素阵列的生成
    的头像 发表于 02-10 11:30 1091次阅读
    基于<b class='flag-5'>FPGA</b>的<b class='flag-5'>图像</b>边缘检测设计

    FPGA图像处理基础----实现缓存卷积窗口

    像素行与像素窗口 一幅图像是由一个个像素点构成的,对于一幅480*272大小的图片来说,其宽度是480,高度是272。在使用FPGA进行图像处理时,最关键的就是使用
    的头像 发表于 02-07 10:43 1411次阅读
    <b class='flag-5'>FPGA</b><b class='flag-5'>图像</b><b class='flag-5'>处理</b>基础----实现缓存卷积窗口

    基于FPGA的GigE Vision相机图像采集方案设计

    1 概述 GigE Vision是一个比较复杂的协议,要在FPGA中完全实现具有较大的难度。如果FPGA作为接收端希望实现GigE Vision相机的配置和图像采集功能,则只需要实现其中小部分功能
    的头像 发表于 01-07 09:34 1847次阅读
    基于<b class='flag-5'>FPGA</b>的GigE Vision相机<b class='flag-5'>图像</b>采集方案设计

    FPGA在AI方面有哪些应用

    提供了强有力的支持。 一、FPGA 在深度学习中的应用 深度学习是 AI 的重要分支,涉及海量的数据运算。FPGA 能够针对深度学习算法中的
    的头像 发表于 01-06 17:37 2086次阅读

    大多数FPGA的程序存储器(FLASH)为什么都放在外面呢?FPGA的主要应用

    FPGA的主要应用:  FPGA由于其较高的价格和成本,决定了FPGA不能像单片机那样被广泛的使用,FPGA的针对于高端处理市场(类如:手机
    的头像 发表于 12-24 11:04 1836次阅读
    大多数<b class='flag-5'>FPGA</b>的程序存储器(FLASH)为什么都放在外面呢?<b class='flag-5'>FPGA</b>的主要应用

    基于FPGA实现图像直方图设计

    简单,单采用FPGA来实现直方图的统计就稍显麻烦。若使用Xilinx和Altera的FPGA芯片,可以使用HLS来进行图像的加速处理。但这暂时不是我的重点。 用C语言实现直方图统计:u
    的头像 发表于 12-24 10:24 1195次阅读
    基于<b class='flag-5'>FPGA</b>实现<b class='flag-5'>图像</b>直方图设计