0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

华为云服务治理—隔离仓的作用

秃头也爱科技 来源:秃头也爱科技 作者:秃头也爱科技 2023-01-18 19:41 次阅读

服务治理通常是指通过限流、熔断等手段,保障微服务的可靠运行,即运行时治理。更加宽泛的服务治理还包括微服务持续集成(开源软件管理、自动化测试等),微服务部署最佳实践(滚动升级、灰度发布等),微服务可观测性能力(日志、监控、告警等)构建等。

  微服务治理专题主要探讨运行时治理。隔离仓是适用于大部分故障模式,简单有效的治理策略,本章介绍隔离仓的原理和作用。

隔离仓的定义和作用

  业务请求的处理都会占用系统资源,包括CPU、内存、线程池、连接池等。隔离仓是一种限制业务请求对系统资源占用的服务治理策略,防止单个业务请求或者单个微服务实例过多的占用系统资源,对其他业务请求以及系统总体的性能产生严重影响。

  线程池是治理策略应用最广泛的系统资源,通常所有请求都在一个共享的线程池处理,常见的隔离仓实现,都是限制请求对线程池的过多占用。本文以 Spring Cloud Huawei 为例,演示其隔离仓在两种故障场景下的作用。

  • 场景一

  微服务A调用微服务B,A和B分别有M个实例,模拟N个并发客户端连续不断的请求A。然后给B扩容1个实例。观察应用治理策略和不应用策略的情况下,时延和TPS的变化情况。

  • 场景二

  微服务A调用微服务B,A和B分别有M个实例,B有两个接口 X 和 Y, 其中X处理100ms,Y处理500 ms,模拟N 个并发客户端通过A连续请求X接口,N 个并发客户端通过A连续请求Y接口。观察应用治理策略和不应用策略的情况下,时延和TPS的变化情况。

Spring Cloud Huawei客户端隔离仓的工作原理和效果

  Spring Cloud Huawei 客户端隔离仓 的主要作用是限制一个实例、或者一个实例的某个接口最大并发数,当一个实例的最大并发处理大于设置的阈值maxConcurrentCalls的时候,后续请求会在当前线程等待maxWaitDuration时间,如果这段时间有请求处理完毕,那么后续请求会继续处理,否则就会被丢弃,返回408错误。

  Spring Cloud Huawei 服务端隔离仓 的主要作用是限制一个接口的最大并发数,当一个接口的最大并发处理大于设置的阈值maxConcurrentCalls的时候,后续请求会在当前线程等待maxWaitDuration时间,如果这段时间有请求处理完毕,那么后续请求会继续处理,否则就会被丢弃,返回408错误。

  • 场景一

  微服务A的隔离仓配置:

servicecomb:

matchGroup:

allOperation: |

  matches:

    - apiPath:

        prefix: "/"
instanceBulkhead:

## 隔离仓限制正在处理的请求数为20个,新来的请求等待1000毫秒没有获取到

## 许可,将被拒绝。

allOperation: |

  maxConcurrentCalls: 20

  maxWaitDuration: 1000

为了匹配测试用例,设置微服务A的线程池大小为20

server:

tomcat:

threads:

  max: 20

  minSpare: 20

  微服务A调用微服务B,A和B分别有1个实例,模拟40个并发客户端连续不断的请求A。然后给B扩容1个实例。观察应用治理策略和不应用策略的情况下,时延和TPS的变化情况。

测试结果:

不使用隔离仓:

Total time:121852

Success count:200000

Timeout count:0

Error count:0

Average Latency:24

|(10,7942)||(20,90667)||(50,93017)||(100,7041)||(200,1151)||(500,173)||(1000,9)|

使用隔离仓:

Total time:112440

Success count:200000

Timeout count:0

Error count:0

Average Latency:22

|(10,8683)||(20,100275)||(50,86137)||(100,4106)||(200,679)||(500,120)||(1000,0)|

  从上述结果可以看出使用隔离仓的情况下,时延大于200ms的请求明显减少。 这个结果说明隔离仓的使用并没有降低系统的处理性能,甚至可能带来一些性能的改善,减少时延偏差较大的请求数量。上述测试场景,并没有演示新启动实例导致故障的场景。如果需要模拟这种场景,可以考虑微服务A部署10个实例,并且采用500个并发客户端访问。

  • 场景二

微服务A的隔离仓配置:

servicecomb:

matchGroup:

allOperation: |

  matches:

    - apiPath:

        # 对耗时的接口配置隔离仓

        prefix: "/benchmark/delay/z100"
instanceBulkhead:

## 隔离仓限制正在处理的请求数为20个,新来的请求等待1000毫秒没有获取到

## 许可,将被拒绝。

allOperation: |

maxConcurrentCalls: 20

maxWaitDuration: 1000
# 为了匹配测试用例,设置微服务A的线程池大小为40
server:

tomcat:

threads:

  max: 40

  minSpare: 40

  微服务A调用微服务B,A和B分别有1个实例,B有两个接口 X 和 Y, 其中X处理1ms,Y处理100 ms,模拟20 个并发客户端通过A连续请求X接口,20 个并发客户端通过A连续请求Y接口。观察应用治理策略和不应用策略的情况下,时延和TPS的变化情况。

测试结果:

不使用隔离仓:

Total time:69029

Success count:40000

Timeout count:0

Error count:0

Average Latency:68

|(10,2175)||(20,12078)||(50,5727)||(100,17)||(200,20003)||(500,0)||(1000,0)||(10000,0)|

使用隔离仓:

Total time:107354

Success count:40000

Timeout count:0

Error count:0

Average Latency:106

|(10,2217)||(20,14264)||(50,3506)||(100,7)||(200,15738)||(500,4268)||(1000,0)||(10000,0)|

  从上述结果可以看出使用隔离仓的情况下,时延小于20ms的请求有所增加,但是时延超过500ms的请求增加更加明显。这是因为测试场景属于IO密集型场景,使用隔离仓,降低了Y接口的并发度,大量请求排队,导致整体的时延大幅增长。下面把客户端隔离仓去掉,改为服务端隔离仓,再看看效果。

微服务B的隔离仓配置:

servicecomb:

matchGroup:

allOperation: |

matches:
- apiPath:
# 对耗时的接口配置隔离仓

prefix: "/benchmark/delay/z100"

bulkhead:

## 隔离仓限制正在处理的请求数为20个,新来的请求等待1000毫秒没有获取到

## 许可,将被拒绝。

allOperation: |

maxConcurrentCalls: 10

maxWaitDuration: 1000
# 为了匹配测试用例,设置微服务B的线程池大小为20

server:

tomcat:

threads:

max: 20

minSpare: 20

  微服务A调用微服务B,A和B分别有1个实例,B有两个接口 X 和 Y, 其中X处理1ms,Y处理100 ms,模拟20 个并发客户端通过A连续请求X接口,20 个并发客户端通过A连续请求Y接口。观察应用治理策略和不应用策略的情况下,时延和TPS的变化情况。

测试结果:

不使用隔离仓:

Total time:110685

Success count:40000

Timeout count:0

Error count:0

Average Latency:109

|(10,160)||(20,1207)||(50,4378)||(100,14091)||(200,19906)||(500,258)||(1000,0)||(10000,0)|

使用隔离仓:

Total time:214565

Success count:40000

Timeout count:0

Error count:0

Average Latency:213

|(10,46)||(20,734)||(50,279)||(100,3941)||(200,14972)||(500,19995)||(1000,33)||(10000,0)|

  从上述结果可以看出使用隔离仓的情况下,平均时延和性能同样会下降。我们适当调整下隔离仓的限制,快速丢弃一些请求:

servicecomb:

matchGroup:

allOperation: |

matches:

- apiPath:
  
  # 对耗时的接口配置隔离仓

prefix: "/benchmark/delay/z100"


bulkhead:

## 隔离仓限制正在处理的请求数为20个,新来的请求等待1000毫秒没有获取到

## 许可,将被拒绝。

allOperation: |

maxConcurrentCalls: 10

maxWaitDuration: 10
# 为了匹配测试用例,设置微服务B的线程池大小为20

server:

tomcat:


threads:

max: 20

minSpare: 20

使用隔离仓的测试结果:

Total time:68189

Success count:22733

Timeout count:1

Error count:17266

Average Latency:115

|(10,53)||(20,2096)||(50,19470)||(100,13025)||(200,3885)||(500,1361)||(1000,109)||(10000,1)|

  上述结果可以看出,快速丢弃请求的情况下,时延小于50ms的请求大于20000个。隔离仓保证了处理很快的接口能够得到快速成功执行,前提条件是处理很慢的接口不占用资源,快速失败。

隔离仓总结

  隔离仓的使用,在计算密集型场景下,对系统的性能影响很小,甚至可以起到一定的性能改善作用。在IO密集型场景下,由于隔离仓降低了请求的并发执行线程,会导致吞吐量降低和时延增加。

  也可以看出,在IO等待比较长的情况下,系统的吞吐量和系统的可靠性是两个没法同时满足的目标,如果要保证成功率不降低,并且吞吐量增加,那么势必增加业务线程等系统资源占用,从而对系统整体的可靠性产生影响。对于耗时的请求,只能通过快速丢弃超过资源使用限制的部分,才能够保证系统吞吐量不下降,并且避免产生系统性的全局功能影响。因此,系统应该合理的设计部分耗时请求的最大并发,在超过这些指标的时候,快速丢弃多余的请求。过度追求耗时请求的吞吐量而扩大线程池、连接池等,是很多应用系统最常见的设计误区。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • IO
    IO
    +关注

    关注

    0

    文章

    396

    浏览量

    38508
  • 华为云
    +关注

    关注

    3

    文章

    2155

    浏览量

    16802
收藏 人收藏

    评论

    相关推荐

      华为深度学习服务,让企业智能从此不求人

      近日,华为发布了深度学习服务,要让企业智能从此不求人。那么企业的深度学习服务有哪些能力,为什么能够做到让企业智能从此不求人呢。   
    发表于 08-02 20:44

     华为MongoDB弹性伸缩能力提升100倍

    (关系型数据库)丰富的查询能力。近期,华为数据库将推出MongoDB增强版服务,上百倍的弹性伸缩能力提升使其备受业界关注。   众所周知,受社区版影响,直接使用开源MongoDB会
    发表于 08-03 13:00

     华为ServiceStage完美支持多个主流源码托管仓库

    随着“微服务架构”的快速发展,传统应用向微服务转移已成为行业趋势,越来越多的公司及开发者从免费服务器的发展中受益。   华为
    发表于 08-03 13:58

    为什么隔离

    电源单元。而数据中心则向客户出租一部分空间。现在您应当明白“为什么隔离了?”的真正含义。由于涉及到高电量和高压,在后台运行并且由隔离
    发表于 08-29 15:36

    求助!关于华为平台对numa的要求

    最近有客户想在AMD双路服务器上装华为平台,但是总无法安装,问了华为工程师,他说华为平台的
    发表于 07-11 10:29

    华为FPGA加速服务器如何加速让硬件应用高效上

    华为FPGA加速服务器让“硬用”上成为新增长点随着通信和互联网产业的快速发展,FPGA作为高性能计算加速器在大数据、深度学习、图像视频处理、基因计算、金融分析和加解密等众多领域得到
    发表于 10-22 07:12

    基于OpenHarmony的华为IoT智慧路灯实现

    程序设计华为IoT任务主要处理消息队列里的信息。任务启动后,通过SetWifiModeOn连接WIFI;WIFI连接成功后,初始化MQTT协议栈,连接到华为IoT
    发表于 05-10 09:36

    基于OpenHarmony的华为IoT智慧路灯

    IoT任务主要处理消息队列里的信息。任务启动后,通过SetWifiModeOn连接WIFI;WIFI连接成功后,初始化MQTT协议栈,连接到华为IoT服务器;成功连接华为
    发表于 05-11 10:06

    华为弹性服务器上远程编译RK3568的相关资料介绍

    1、在华为弹性服务器上远程编译rk3568配置华为弹性服务器首先注册并登陆
    发表于 09-08 17:06

    安全、快速、稳定,华为CDN赋能中小企业数字化发展

    速度完成相应的任务。这种方式下,每个区域和每个节点之间存在着相对独立的数据传输通道,即所谓“点对点”传送模式。作为CDN领域国内领先的服务提供商,华为CDN致力于为全球范围内的中小企业以及个人用户
    发表于 10-25 14:40

    【合作伙伴】华为--智能见未来

    华为华为IoT,致力于提供极简接入、智能化、安全可信等全栈全场景服务和开发、集成、托管、运营等一站式工具
    发表于 12-12 10:35

    Fibocom 公有华为 技术资料

    Fibocom 公有华为 技术资料内容如下:1、华为连接教程2、华为
    发表于 01-05 12:12

    华为服务治理 | 微服务常见故障模式

    等),微服务可观测性能力(日志、监控、告警等)构建等。 华为云微服务治理专题主要探讨运行时治理。我们首先从常见的故障模式开始。 扩容缩容 在
    的头像 发表于 01-18 17:44 461次阅读

    华为服务治理 | 服务治理的一般性原则

    华为服务治理 | ** 服务治理的一般性原则** 服务
    的头像 发表于 01-18 18:19 314次阅读

    华为云 CodeArts 开源治理服务,解锁软件安全新标准

    在数字化时代,软件的安全性日益受到关注,而开源软件的快速发展也带来了新的挑战。再次背景下,华为云开源治理服务华为云开源治理
    的头像 发表于 12-10 21:00 730次阅读
    <b class='flag-5'>华为</b>云 CodeArts 开源<b class='flag-5'>治理</b><b class='flag-5'>服务</b>,解锁软件安全新标准